
1 TASK: UT40

UT40- CDRL:040402/14/92

AD-A247 267 STARS Reuse Concept 24

t i Vol u me I - Conceptual
Framework for Reuse Process
Version 1.0
Informal Technical Data

Paramax
Systems
Corporation

I DTIC *

g MARI1 3 1992

I S D Softwar Technrolog for Adatab eReiabl Systems

STARS-TC-04040/00 1/00

14 February 1992

I
This d cment has be2 pprovefor ,ubl,,u re se dsaeitI distrJbtition is unlimited. is

_II92-06598" ~ ~II I I 11U1111 1 ll U
IPaa-at Syste-s Corporation is a wholly owned subsidiary of Unisys Corporation

1 92 3 13 o02

i
TASK: UT40

CDRL: 04040
14 February 1992

I
I

I
INFORMAL TECHNICAL REPORT

3For The

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
3 (STARS)

STARS Reuse Concepts
Volume I - Conceptual Framework for Reuse Process -ccesion For -

Version 1.0 NTs C.ZA:
i ~~[iC T 'I _

STARS-TC-04040/001/00 U* ..14 February 1992 J -A

3 B
Data Type: A005, Informal Technical Data D ":t.. -,.. .

CONTRACT NO. F19628-88-D-0031I Delivery Order 0008 D - .

Prepared for: A-f
Electronic Systems Division I A

Air Force Systems Command, USAF
lanscom AFB, MA 01731-5000

I Prepared by:

The Boeing Company, IBM, Paramax Systems Corporation,
Defense & Space Group, Federal Sector Division, Tactical Systems Division,
P.O. Box 3999, MS 87-37 800 N. Frederick Pike, 12010 Sunrise Valley Drive,
Seattle, WA 98124-2499 Gaithersburg, MD 20879 Reston, VA 22091I

I
I

I
TASK: UT40

CDRL: 04040
14 February 1992

I
I
I

5 Data ID: STARS-TC-04040/001/00

Distribution Statement "A"
per DoD Directive 5230.24

Authorized for public release; Distribution is unlimited.

3 Copyright is assigned to the U.S. Government, upon delivery thereto, in accordance with the
DFAR Special Works Clause.

This document, developed under the Software Technology for Adaptable, Reliable Systems (STARS)I program, is approved for release under Distribution "A" of the Scientific and Technical Information
Program Classification Scheme (DoD Directive 5230.24) unless otherwise indicated. Sponsored by
the U.S. Defense Advanced Research Projects Agency (DARPA) under contract F19628-88-D-0031,
the STARS program is supported by the military services, SEI, and MITRE, with the U.S. Air
Force as the executive contracting agent.

5 Permission to use, copy, modify, and comment on this document for purposes stated under Dis-
tribution "A" and without fee is hereby granted, provided that this notice appears in each whole
or partial copy. This document retains Contractor indemnification to The Government regard-
ing copyrights pursuant to the above referenced STARS contract. The Government disclaims all
responsibility against liability, including costs and expenses for violation of proprietary rights, or3, copyrights arising out of the creation or use of this document.

In addition, the Government and its contractors disclaim all warranties with regard to this doc-
ument, including all implied warranties of merchantability and fitness, and in no event shall the
Government or its contractors be liable for any special, indirect or consequential damages or any
damages whatsoever resulting from the loss of use, data, or profits, whether in action of con-
tract, negligence or other tortious action, arising in connection with the use or performance of this
document.

I

TASK: UT40
CDRL: 04040

14 February 1992

INFORMAL TECHNICAL REPORT
STARS Reuse Concepts
Volume I - Conceptual Framework for Reuse Processes

I Version 1.0

Approvals:

Boeing Reuse Technical Lead Margaret Davis Date

IBM Reuse Technical Lead Brian Bulat / /Date
I 2.

Unisys Reuse Technical Lead Richard Creps Date

(Signatures on File)

Form ApprovedREPORT DOCUMENTATION PAGE jOMB No 0704-088

P h 'eO.Y ' .o e' "c' " ',s c~ec on f ,ntorrat on , estm atea c average ' jo r De , e ops e. , cnlua i g t e tim e or revleing instr cctcn , se r ea : ' c t, I:;r,,t _

a herno and maintain ng the oata neecea. anc como en an reve ! q tre ':iie cn 1 ftormation eno comments re araina tills 0 ren estimrate C , r.
,

n dsoe' . 't !h s
¢oIiecton :f ioa .n'tJO nc..omg suggestions tor reUclrng this ouraen t: Aasnngon ,eaoouarters Servces. Directorate for infomation Ooerations and Reocris 215 ;efterson
Davis S.,te 12C4 A, nomtn VA 22202-4302 and to tP'h O"f y of Mana0nrmpnt arc Beaget DDerwcOK Reducton Project (0704-0188). Washnotan CC 2CC3

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

12 February 1992 Informal technical Data
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

STARS Reuse Concepts
Volume I - Conceptual Framework for Reuse Process

Version 1.0 FI9628-88-D-0031

6. AUTHOR(S)

IBM, Paramax, Boeing

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Paramax Corporation
12010 Sunrise Valley Drive STARS-TC-04040/001/00

Reston, VA 22091

9. SPONSORING, MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING MONITORING
AGENCY REPORT NUMBER

Department of the Air Force
Headquarters, Electronic Systems Division (AFSC)
Hanscom AFB, MA 01731-5000 04040

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Thai docmment has been approved

Distribution "A". for public release and sale; its
distribution is unlimited.

13. ABSTRACT (Mamimum 200 words)

The purpose of this document is to articulate STARS concepts and expectations
for reuse in the context of system development.

The concepts described in tn-s document are intended to be generic with
respect to their application within specific organizations, relative to
specific methodologies or approaches, or as supported by a specific
software engineering environment (SEE).

i

14 SUBJECT TERMS 15. NUMBER OF PAGES

56
Reuse, process. 16. PRICE CODE

17 SECURITY CLASSIFICATION 18 SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT SAR

Unclassified unclassified unclassifiedI1"71. 510-o .80 5500 5"a r"'o' 298 'Rev 289'

14 February 1992 STARS-TC-04040/001 /00

'Contents

1 lIntroduction I
1.1 Purpose/Context 1
1.2 Applicability 1
1.3 Scope. 2
1.4 Document Context. 2

1.4.1 Relationship to other STARS products 2
1.4.2 Document Organization. 3

2 References 4

13 STARS Reuse Vision, Mission and Strategy 5

4 STARS Reuse Process Framework 9
4.1 Reuse Planning. 13

4.1.1 Reuse Strategy Development. 13
4.1.2 Incorporation of Reuse Into the Project Process 16I'4.1.3 Process Measurement and Evolution. 16

4.2 Asset Creation. 17
4.2.1 Domain Analysis and Modeling. 18I4.2.2 Software Architecture Development 20
4.2.3 Software Component Development 21
4.2.4 Application Generator Development. 22I4.2.5 Asset Evolution. 23

4.3 Asset Management 23
4.3.1 Asset Acquisition. 23I4.3.2 Asset Acceptance. 24
4.3.3 Library Data Modeling. 25
4.3.4 Asset Cataloging 26I4.3.5 Asset Certification. 27
4.3.6 Library and Asset Metrics Collection 27
4.3.7 Library Administration and Operation. 28I4.3.8 Asset Maintenance and Enhancement 1

4.4 Asset Utilization 31
4.4.1 System Composition. 3214.4.2 System Generation 37
4.4.3 Feedback to Reuse Planning. Asset Creation, and Asset Management 41

15 Integrating Views of the Framework 43
5.1 Reuse-based Software Life Cycle Models 43
5.2 Technology Support for Reuse Processes. 46I 5.2.1 Reengineering Technology. 46

5.2.2 Construction Technologies. 47
5.3 Seamless Library Interoperability. 48I5.3.1 Levels of Library Interoperability. 48

5.3.2 Interoperability between Libraries and SEEs. 50

A Glossary 51

I Page ii

14 February 1992 STARS-TC-04040/001 1/00

U List of Figures

1I STARS Conceptual Framework for Reuse Processes. 10

12 Methods Supporting Reuse 45

3 Types of Domains 53

PaeIi

I
14 February 1992 STARS-TC-04040/001 /00

IPrologue
I This is version 1.0 of the STARS Reuse Concepts document. It is the initial release of the document

and supercedes an earlier draft version entitled STARS Reuse Concept of Operations, version 0.5.
The title was changed to more properly reflect the content of the document. Version 1.0 consists of
Volume I of what will eventually become a three volume set. This volume introduces basic STARS
reuse concepts and provides a high-level definition of the STARS Conceptual Framework for Reuse
Processes. Volume II will provide a more detailed definition of the Framework and the processes it
encompasses. Volume III will provide a "Practitioner's View" of STARS reuse concepts, illustrating
through sample scenarios how the Framework and processes can be employed in practice.

This is intended to be a living document. It will be revised and re-released periodically to reflect
the lessons learned in the implementation and application of the concepts described herein, as well
as to reflect the input and feedback from reviewers both internal and external to STARS.

The authors recognize that this version of the document is somewhat inconsistent in the depth at
which various topics are addressed. It may also be somewhat inconsistent and/or require additional
precision in the definition and use of certain concepts. Among other things, we recognize the need
for more precision and consistency in the definition and presentation of the terms domain model
and software architecture, in the reuse context.

We solicit reader review and comments as input to version 2.0, which will include a revised Volume
I and the initial release of Volume II. Version 2.0 will be released in the third quarter of 1992.
Comments can be submitted to:

Dick Creps
STARS Center
Paramax Systems Corporation
12010 Sunrise Valley Drive
Reston, VA 22091
phone: (703) 620-7100
FAX: (703) 620-7916

In addition, comments can be sent electronically to the STARS reuse mailer:

reuse~gstars.rosslyn.unisys.com

Page iv

I
14 February 1992 STARS-TC-04040/001/00

I i1 Introduction

I This document was jointly developed through the efforts of a STARS working group consisting of
members from each of the STARS' prime contractors, the Software Engineering Institute (SEI), and
the MITRE Corporation. The cooperative effort was supported by numerous meetings, conference

I calls, and exchange of text through electronic mail and the AFS wide-area network file system'.

* 1.1 Purpose/Context

The purpose of this document is to articulate STARS concepts and expectations for reuse in the
context of system and software development. This purpose is accomplished by:

5 elaborating on the STARS reuse vision;

* stating STARS goals for reuse;

* defining a conceptual framework for considering and defining reuse processes;

* identifying low lvel reuse processes that STARS may provide as process building blocks
(precise, composable process definitions) in the context of the reuse process framework and
specific life cycle models;

• establishing a common terminology for reuse;

9 addressing the impact and opportunities for use of distributed, heterogeneous asset libraries
as a reuse-enabling technology; and,

o providing a context for understanding STARS reuse plans and products.

We believe that there is no one "right" software development process that is applicable to all
organizations, applications, projects, or methodologies. In addition, it is clear that a total software
development process has non-reuse components. As a result, this document does NOT:

o address the total software development process;

o define a reuse-based development process for a specific organization; or

3 prescribe "the" way to do reuse.

5 1.2 Applicability

The concepts described in this document are intended to be generic with respect to their applicationI= within specific organizations, relative to specific methodologies or approaches, or as supported by
a specific software engineering environment (SEE).

'AFS is a product of Transarc Corporation.

3_ Page 1

14 February 1992 STARS-TC-04040/001 /00

We expect that this document will be used by technologists who create, monitor, administer, and
modify systems and software development and maintenance processes. (For clarity and consistency
with concepts in the STARS Process Operational Concept Document, we will refer to these in-
dividuals as process engineers.) Volume I describes the STARS Conceptual Framework for Reuse
Processes and provides some guidance for how the reuse concepts embodied in the Framework might
be applied throughout a life cycle process. Volume II of the STARS Reuse Concepts document, to
be produced in the coming months, will provide a more detailed definition of the Framework and
the processes it encompasses. A subsequent Volume III of the document will provide a "Practi-
tioner's View" of STARS reuse concepts, illustrating through sample scenarios how the Framework
and processes can be employed in practice. Volumes II and III together should help to guide pro-
cess engineers in selecting specific reuse processes that are appropriate for a particular project,
application, or organization.

We also expect that this document will be of interest to:

" process engineers developing reuse process building blocks.

1 software program managers in understanding how reuse may affect the development process
and be incorporated into project planning; and

* acquisition planners and policy makers who seek a technical perspective on reuse issues to
gain a better understanding of how to foster reuse.

1.3 Scope

The scope of this document is limited to providing a framework for understanding the technical
issues involved in integrating reuse throughout a system or software life cycle process. STARS will
be providing process building blocks for some of the reuse processes described in this document.

It shou'd also be noted that legal, business, and acquisition aspects of reuse are outside the scope
of this document.I
1.4 Document Context!
1.4.1 Relationship to other STARS products

I While this document can be read and studied independently of other STARS documents, it is closely
related to the Asset Library Open Architecture Framework (ALOAF) document and also bears
some relationship to the STARS Process Operational Concept Document (POCD). The ALOAF
provides requirements and a framework for the technical support that reuse libraries and tools may
provide for seamless interoperation and data interchange as described in section 5.3. The POCD
focuses on integrating software processes with the development environment and also addresses the
tailoring of process building blocks, their composition to form project life cycle processes, and their
integration into even larger, existing process contexts. This document supplements the POCD by
providing a more detailed, reuse-oriented perspective on some of the POCD topics.

Page 2

14 February 1992 STARS-TC-04040/00 1/00

1.4.2 Document Organization

This is Volume I of a three volume set. Section 1 provides introductory material that describes
the boundaries for the remainder of the document and that gives some context with respect to the
STARS program. Section 2 lists all documents that are directly referenced in this volume. Section
3 provides the STARS expectations for reuse with respect to the current state of the practice and
STARS goals. Section 4 describes th STARS Conceptual Framework for Reuse Processes. Section
5 discusses various views of reuse with respect to the Framework. There is a glossary of terms in
Appendix A.

Page 3

I
14 February 1992 STARS-TC-04040/001/00

2 References

[BB91] J. Bladen and S. Blake. Ada Semantics Interface Specification. In Proceedings of Tri-
Ada '91, New York, NY, October 1991. Association for Computing Machinery.

3 [HCKP89] Robert R. Holibaugh, Sholom G. Cohen, Kyo C. Kang, and Spencer Peterson. Reuse:
Where to Begin and Why. In Proceedings of Tri-Ada '89, pages 266-277, New York,
NY, Cctober 1989. Ass ,ciation for Computing Machinery.

[JHD+90] A. Jaworshi, F. Hills, T. Durek, S. Faulk, and J. Gaffney. A Domain Analysis Process.
Technical Report DOMAINANALYSIS-90001-N, Software Produc ivity Consortium,
SPC Building. 2214 Rock Hill Road, Herndon VA, 22070, Janaary 1990.

[Par79] D. Parnas. Designing Software for Ease of Extension and Contraction. IEEE Transac-
tions on Softuare Engineering, SE-5(2):128-138, March 1979.S[Ree9l] Naval Surface Warfare Center. Second Annual Systems Reengineering Workshop. Silver
Spring, MD, March 1991.

[STA90] STARS. Task QM15 Phase II Lessons Learned, 1990. STARS CDRL 1520 (Separate
deliveries by Boeing. IBM, Unisys).

[STA91] STARS. STARS Vision, Version 0.1, May 1991. Interna Draft.

Page 4

14 February 1992 STARS-TC-04040/001 /00

3 STARS Reuse Vision, Mission and Strategy

Reuse Vision

The reuse concepts put forth in this document are based on the STARS vision stated in [STA91].
These concepts elaborate on the vision with respect to reuse. The high level STARS vision statement
is the following:

Software-intensive system development will evolve to a process-driven, domain-specific
reuse-based, technology-supported paradigm. The paradigm will support collaborative
development across geographically dispersed project teams.

The concept of what it means to be reuse-based and how the process, technology, and domain-
specific elements of the vision statement constrain the meaning are discussed in this section. We
also provide interpretation of those terms from the perspective of the reuse capabilities within a
STARS software engineering environment (SEE).

Being process-driven means that the software development is done in accordance with well defined
processes that are enforced through management policies and for which, at a minimum, definition
and guidance are provided in the SEE. In the long run the processes will be substantially automated
and enforced by the environment.

Being reusc-bascd means that the standard approach to software-intensive system development
and evolution is to derive new and modified systems principally from existing assets rather than
to create the systems anew. This approach requires that relevant assets be available, as well as
processes defining how to use the assets to produce the systems. The reuse vision therefore includes
reusable assets as a central concept and features families of processes for asset creation, management
and utilization. These three families, together with a family of reuse oriented planning processes,
comprise the STARS Conceptual Framework for Reuse Processes.

The reusable assets in the asset libraries include not only the software components most commonly
associated with reuse but also such additional kinds of information as the following:

* Reusable forms of other software products: e.g., requirements specifications, architectures,
designs, test procedures

* Application domain knowledge; e.g., models. data dictionaries, algorithms

* Process definitions; e.g., for managing asset libraries, for developing application systems

* Rationale; e.g., for the inclusion of features, services, objects, and/or algorithms in a system;
for the selection of one architecture or design over another.

Being domain-specific means that the reusable assets, the development processes, and the sup-
porting technology are appropriate to, perhaps tailored for, the application domain for which the
software is being developed. STARS has selected a strategy of domain-specific reuse because we
believe that is how the greatest leverage will be obtained. The domains discussed in the STARS

Page 5

I
14 February 1992 STARS-TC-04040/00 1/00

vision document are application domains. Application domains are generally thought of as broad,
for example C3 I, and as being comprised of subdomains. These subdomains may be unique to the
application domain or common across several domains. We believe that the same reuse concepts
and the same generic processes and technology apply to domains of various types and levels. The
STARS vision emphasizes that a domain-specific software architecture with standard interfaces is
a key aspect of the reuse paradigm.

The nature of the domain-specific assets available to be reused in the production of a new system
depends in part on the maturity of the application domain and in part on the prior investment in
the generation of assets. As a domain matures there is greater experience with and understanding
of it and an increasing number of systems from which to draw information. If there is investment
in developing assets within the domain and in maintaining, refining, and extending them based on
experience with their use, then the effectiveness of the assets will increase, as will knowledge of how
to use them. The STARS reuse vision includes the maintenance and improvement of assets based
on feedback from their use.

Being technology supported means that there is substantial automated support for the reuse pro-
cesses. This support includes asset library mechanisms that support the storage and access of asset
information and additional tools that support various reuse functions. Further, the reusable assets
and the support tools are integrated in a SEE.

Doing collaborative development across geographically dispersed project teams means that reusable
assets can be shared among libraries that are geographically distributed and hosted on heteroge-
neous platforms. The STARS concept is that a user will have seamless access to assets in multiple,
heterogeneous libraries. The visiun is that a user can use a single interface to interact with all
libraries, unaware of whether or not an asset comes from a local or remote library and of the
particulars of the user interface or of the data model associated With the originating library.

The principal benefit of achieving the vision is improved predictability and quality in software-
intensive system development and maintenance. Realization of the vision will mean that over time
the amount and quality of reusable resources will increase while the amount of new development
and risk decreases.I
Current Practice

Currently, software development for DoD systems is not predominantly reuse-based. Many cultural,
legal, contractual, and technical reasons account for the low level of reuse on DoD systems. When
reuse does occur, it is likely to be done through individual initiative, rather than in response to
a deliberate plan and well defined processes. Reuse is likely to involve design and code rather
than complete sets of requirements, design, code, tests, etc. The reuse occurs within a single
organization, often between similar projects. Significant modification of the reused material may
be needed because it was not designed for reuse.

However, in spite of the perceived barriers to reuse, there is some movement towards reuse-based
development. The government has supported the research and development of reuse technology,
including the Common Ada Missile Packages (CAMP) program to develop missile components and
associated tools; the Reusable Ada Avionics Software Packages (RAASP) program; the Reusable

Page 6

14 February 1992 STARS-TC-04040/001 /00

Ada Products for Information Systems Development (RAPID) and STARS library systems; the
Domain Specific Software Architecture (DSSA) program; etc. DoD organizations such as the
Joint Integrated Avionics Working Group (JIAWG), the Strategic Defense Initiative Office (SDIO),
and the Army Communications and Electronics Command (CECOM) and Information Systems
Command have reuse initiatives. Individual companies have begun to formalize reuse and to develop
reusable components for competitive advantage (e.g., TRW's Network Architecture Services) or for
sale (e.g., EVB's GRACE components). These efforts, and others, indicate that some steps are
being taken to move the government and industry towards reuse-based capabilities. The STARS
program is building on the results of these efforts and undertaking additional initiatives to make
the realization of the vision possible.

Reuse Mission and Strategy

The overall mission of STARS in the reuse area is to accelerate the shift within DOD and industry
to the reuse-based domain-specific software development paradigm described by the STARS reuse
vision. The STARS strategy for effecting the acceleration of the shift to reuse-based software
engineering is to:

3 Demonstrate the benefits of domain-specific reuse in a familiar context for DOD applications,

* Support the transition from the current paradigm in such a way as to reduce risks in DOD's
evolution to domain-specific reuse-based development, and

• Ensure that basic reuse support capabilities, both processes and technologies, are available
and validated for use.

We will demonstrate the benefits of domain-specific reuse by first describing the paradigm that we
envision. This document is an initial, high level description of elements of that paradigm. The
application of the paradigm will be demonstrated by actual DoD system projects in the 1993 - 1995
timeframe, and before then through trial use by STARS Affiliates.

STARS will support the transition to domain-specific reuse-based operations by providing both
guidance about how to implement the paradigm and lessons learned from reuse projects that have
undertaken reuse in a similar manner. Examples of reuse guidance are further elaboration of the
Conceptual Framework for Reuse Processes defined in this document, detailed definitions of the
processes that are central to reuse, a sample software development plan using a reuse-based model,
and a reuse adoption handbook.

STARS will ensure that reuse processes are available by first identifying a set of generic reuse
related processes. STARS will seek and evaluate existing definitions of reuse processes and will also
develop needed process definitions. STARS will further embed the process definitions in the SEE
in order to facilitate their application, measurement and continuous improvement. The processes
will be applied and validated internally and in the demonstration projects mentioned above.

STARS will ensure that reuse support technology is available by identifying the requirements for
technology to support the reuse processes. We will then determine whether there are commercial
or prototype products that meet the requirements. When there are technology products available,

Page 7

14 February 1992 STARS-TC-04040/001 /00

STARS will evaluate and integrate them into a SEE. We will determine and define how they can
be used individually and together to support the reuse processes. Where there are no capabilities
available, STARS will attempt to stimulate the development of appropriate capabilities. This
may occur through the prototyping and feasibility demonstration of needed capabilities. It may
also occur through the convening of government and industry organizations to develop proposed
standards for the technology.

PI
I
I

I
I
I
I
I
I
I
I Page 8

14 February 1992 STARS-TC-04040/001 /00

4 STARS Reuse Process Framework

STARS has identified functions and processes supporting reuse in the context of software-intensive
system development and maintenance. Further, these reuse supporting activities have been orga-
nized into a Conceptual Framework for Reuse Processes (hereafter called the Reuse Process Frame-
work) containing four families of processes. The names of these families emphasize the primary
purpose of each. The reuse process families (see Figure 1) are:

* reuse planning;

o asset creation;

* asset management; and,

* asset utilization.

The families of the Reuse Process Framework can be decomposed further to identify processes and
functions focusing on different aspects of each family's purpose. Individual organizations may use
different decompositions of these families to suit their goals and business strategies. However, the
decomposition that is used in the remainder of this section is:

e reuse planning;

- reuse strategy development,

- incorporation of reuse into the project process,

- process measurement and evolution,

* asset creation;

- domain analysis and modeling,

- software architecture development,

- software component development,

- application generator development,

- asset evolution,

• asset management;

- asset acquisition,

- asset acceptance,

- library data modeling,

- asset cataloging,

- asset certification,

- library and asset metrics collection,

- library administration and operation,

- asset maintenance and enhancement,

Page 9

14 February 1992 STARS-TC-04040/001/00

MARKET FORCES
ASSETS

EXISTING SYSTEMS
DOMAIN EXPERTISE

TOOLS

PLAN Strategies,
: !Tailored Processes,

Resources
I--

Needs,
Lessons Assets
Learned, CREATE
Process

*Assets
A stAssets &

Lessons MA NA GE Descriptions

Lessons UTILIZE

Needs

SOFTWARE AND RELATED PRODUCTS

Figure 1: STARS Conceptual Framework for Reuse Processes

Page 10

14 February 1992 STARS-TC-04040/001/00

3 asset utilization;

- system composition,

- system generation,

- asset identification,

- asset understanding, evaluation, and selection, and

- asset tailoring and integration.

The arrows in Figure 1 represent the extensive information flow, influence, and feedback among the
four process families. In general, the arrows represent the flow of decisions, constraints, experience
lessons, and assets.

As the figure shows, inputs to the Reuse Process Framework are market forces, existing assets,
systems, domain expertise, and tools. A market force is defined as the requirements or needs of
any intended customer.

Outputs from the Framework are software and related products, such as software systems, software
architectures, software components, asset libraries, experience reports, domain analysis results, and
domain models.

The results of the reuse planning processes feed separately into the asset creation, asset manage-
ment, and asset utilization process families. Planning processes set goals and strategies, select and
effect the tailoring of processes consistent with the goals and strategies, and identify and allocate
existing resources. The asset creation process family produces software and software related assets.
The asset management process family evaluates, describes, organizes, and provides access to the
assets produced by the asset creation process family. The asset utilization process family accesses
the organized assets to construct software-intensive systems.

Lessons learned regarding the usage, applicability, quality, and reusability of assets are feedback
from the asset utilization processes to the asset management processes. Lessons learned regarding
missing assets or possible asset generalizations are feedback from the asset utilization processes into
the asset creation processes. Lessons learned regarding asset quality and description are feedback
from the asset management processes to the asset creation processes. Needs for new assets; lessons
learned regarding process usage, applicability, and quality: and new process assets are feedback
from the asset creation, asset management. and asset utilization processes into the reuse planning
processes.

Once an organization or project has identified the factors that constrain its planning and selection
of reuse strategies and approaches, the flows shown in the diagram of the Reuse Process Framework
and the decomposition of the process families can be used to guide reuse process-related decisions.

Using the Reuse Process Framework

Historically, organizations have based their software development plans on methodology, technique,
or tool selections made to implement an idealized system life cycle. Indeed, software development
has mostly been regarded as one gigantic waterfall life cycle model divided into major phases

Page 11

14 February 1992 STARS-TC-04040/001/00

encompassing system conception to demise. In contrast, STARS is promoting the concept that
there are multiple, valid modern software life cycle models appropriate for different organizational3goals, strategies, and strengths. That is, STARS is generalizing the life cycle model concept from
a strategy for software system development to strategies for software product development, where
products can include components, interface and protocol standards, architectures, domain models,3 and application generators, as well as application systems.

In fact, STARS itself is applying this strategy to a significant degree in the domain of reuse processes
through definition of the Reuse Process Framework. One fundamental assumption underlying the
Framework is that processes can be defined in discrete, well-defined units called process building
blocks. These building blocks can be readily combined to complement one another in addressing
broader segments of a life cycle than each process would individually, and they can be successfully
integrated into larger, existing process contexts.

Thus, as opposed to modeling and planning a development strategy around major activities and
tools, the Reuse Process Framework supports the notion of composing a life cycle process from
process building blocks. We believe the primary benefits of this approach to be:

* Adaptable application of processes within specific organizations, in the context of specific
methodologies or development approaches, or as supported by a specific software engineering
project environment.

* Establishment of a common frame of reference for discussing and defining reuse processes
within an organization, resulting in increased understanding of the technical issues involved
in integrating reuse throughout a system or software life cycle process.

In the short term, there is a risk associated with composing a life cycle process from process building
blocks. The risk arises because treatment of processes in this manner is a relatively new concept.
Thus, there are few readily available process descriptions that were defined in the context of a
single process framework or architecture, there is little experience in composing such descriptions,
and there is relatively little robust technology for defining, measuring, and enacting such processes.
STARS believes that the Reuse Process Framework is a critical step in addressing these prob-
lems. STARS is also working to establish the availability of a core set of reuse process building
blocks consistent with the Framework and is working to provide appropriate process infrastructure
technology, as well.

In summary, we believe the benefits of a building block approach to process definition to be:

1 Easier implementation and tailoring of life cycle processes and models in support of individual
domains, organizations, and engineers.

* Simplified management, measurement, monitoring, and improvement of life cycle processes;
consequently, improvement of life cycle models.

* Identification of the similarities in technologies and engineering skills supporting various life
cycle processes and models, enabling reuse of those technologies and skills in broader contexts.

These benefits accrue because process building blocks are well-defined, can be represented formally,

Page 12

14 February 1992 STARS-TC-04040/001/00

have definite begin and end points and start and stop criteria, span a shorter time duration than
conventional life cycle phases, and can be customized to tools and environments that are available.

4.1 Reuse Planning

As noted above, it is assumed that reuse processes will be integrated with other processes to compose
a total life cycle process for an organization or project. The reuse planning processes identified
here, in particular, will be complementary to and combined with other planning processes. An
important function of the planning activity in Figure 1 is to define a reuse strategy and to plan
for its implementation within the organization that is undertaking a reuse program. A second
function is to prepare for the implementation of the strategy and plans by selecting and tailoring
appropriate reuse process building blocks to be combined with other processes to establish the
overall process for a specific project or family of projects. A third, ongoing, planning function is
to measure and evolve the project processes thus established and to evolve the overall reuse plans
accordingly. Many of the planning activities and products discussed here are appropriate at both
the organizational and specific project levels.

4.1.1 Reuse Strategy Development

A reuse strategy is needed to plan and guide the asset creation, management, and utilization pro-
cesses employed within an organization. The activities required to define the strategy will depend
on the nature of the organization, e.g., whether it is a company seeking to market reusable com-
ponents or develop systems based on them, a DoD Program Executive Officer establishing a reuse
program for a given domain, a Program Manager developing a specific system, or a maintenance
organization. The strategy will be influenced by the organization's goals and top level reuse policy.
A software reuse strategy may include but is not limited to the following:

* domain selection method,

* asset creation plan,

e asset management plan,

* asset utilization plan, and

0 process and product improvement plan.

The overall approach that is taken to define the plans listed above is dependent on how broadly
the plans will be applied. A large organization intending to employ reuse-based approaches in aI number of domains and in a large number of projects with differing goals might define their reuse
plans very generically and at a very high level. Smaller organizations that, for example, operate
within a single domain, may want to define plans that lay out a set of life cycle models that describe
in significant detail how reuse-based methods will be applied in various kinds of projects and how
they will be integrated with non-reuse-based methods. Such a smaller organization may be part
of some larger organization, and its planning activity may primarily involve tailoring its parent

Page 13

I
14 February 1992 STARS-TC-04040/00 1/00

organization's plans by adding details to meet its more specialized needs. Similarly, an individual

project will further tailor its organization's life cycle models to meet specific project needs.

The ensuing subsections focus on the development of reuse plans by the "smaller" organizations
described above, typically in the context of a single domain. The envisioned overall approach to3 developing plans of this nature is dependent on the existence of a collection (perhaps a library)
of reusable software engineering process definitions. During the planning process, these reusable

process definitions provide the basis for the plans that are produced. Appropriate processes are3 selected for inclusion in each plan, and these processes are then tailored to the organization's needs.
Depending on how broadly the plans are to be applied, this tailoring may involve generalizing the
processes rather than specializing them. If the set of reusable processes is not fully adequate for
organization needs, existing process definitions can be extended or new process definitions can be
developed, as appropriate. After the processes are tailored, they are combined to form a set of
reuse-based life cycle models to be employed by the organization, which may be augmented by
additional processes, policies, and constraints to form one or more overall software life cycle models
for the organization.

U Domain Selection Method

3 When the domain in which a reuse program is to be established is not obvious, the selection of
a domain is an important early activity. Selection is typically a two step process where domains
are identified using established criteria, and then selected after several evaluation activities are

completed. Among the criteria for domain identification are [HCKP89, JHD+90]:

" The domain is well-understood and includes codified experience that can predict technology
and provide domain expertise.

" The domain is based on predictable technology that will not make the reusable assets obsolete

before the investment in their development can be recovered, and

* Domain expertise is available to support domain analysis and asset creation.

After candidate domains have been identified, the domain is selected through evaluation of several
additional factors. Among these factors are (.11(D+901:

* the size of the market for systems in the domain,

1 the readiness of the organization to pursue reuse in the domain, and

* the economic viability of doing business in the domain, from a cost vs. benefit standpoint.

Asset Creation Plan

The asset creation plan defines the processes, metrics, and technology to be used for asset creation.
The processes and technology for asset creation and asset utilization should be coordinated to

maximize the benefits from reusable assets. In the context of this coordination effort, a plan is

Page 14

U
14 February 1992 STARS-TC-04040/001/00

generated for analyzing and modeling the domain, creating a reusable software architecture, and
creating reusable components and/or application generators. This plan defines the processes for andU- products of asset creation. These may vary as a function of the design approach, (e.g., functional or
object oriented), the specific requirements of the domain (e.g., hard real-time deadlines), and the
reuse approach (e.g., composition or generation). The processes and technology may also dependI on the maturity of the domain, the level of expertise available, whether there are legacy systems to
be studied, and whether relevant reusable assets exist. Metrics addressing the flexibility, reliability,
and modularity of the assets are also appropriate to the plan.

Asset Management Plan

An asset management plan defines the way in which assets will be acquired, stored, accessed, and
maintained. It establishes policy and, usually in close coordination with the asset creation plan,
defines the overall technical and administrative approaches. This plan may address the following:

* Definition of the types of assets to be stored,

* Data to be collected and stored as part of the asset description,

3 Tools and classification schemes for storage and retrieval of assets,

• Criteria for accepting assets for storage and retrieval,

1 Access policies and privileges by role and individual user, and

* Configuration management that addresses the evolution of assets.

The specific provisions of the plan are based on the reuse goals, the maturity of the domain, and
the technology needed and available for asset storage and retrieval.

Asset Utilization Plan

The asset utilization plan identifies the reuse processes and tools to be employed in utilizing the
assets. Selection of the processes depends on the technology that is used to create the assets, the
maturity of the domain and the organization, and the tools available to support reuse of assets. For
example. the use of a code generator for a domain will be different from the manual composition of
code components. The utilization plan also identifies the life cycle activities in which the reusable
assets may be considered or employed. For example, if code is the only form of reusable asset
available, the developer must "look ahead" in analysis and design to ensure that the code assets
on hand are not excluded during and by those activities.

Process and Product Improvement Plan

A reuse strategy is derived from the goals for reuse. The goals for reuse may include improving the
reuse process. evaluating the degree of reuse, improving the reliability of reusable assets, improving

Page 15

U
14 February 1992 STARS-TC-04040/001/00I
the reliability of systems, or increasing the productivity of the application programmer. A process
and product improvement plan should be defined for monitoring the process and products to3determine which goals were or ,cre not achieved. This plan provides for feedback among the
asset utilization, management and creation processes and to the planning proce -es. One way in
which it achieves this is by defining the data that needs to be collected during asset creation,
management, and utilization to measure the effectiveness of reuse. The plan further addresses how
the measurements and feedback will be used to improve the process and products. The measurement
and feedback activities can be considered part of the asset creation, management, and utilization
processes, but it is useful to plan those activities in the larger context of overall process and product
improvement.

4.1.2 Incorporation of Reuse Into the Project Process

l3 The reuse plans discussed in the preceding section should be generic enough to accommodate each
kind of reuse-oriented project the organization wishes to pursue; thus, the processes will require
further tailoring for each specific project. This will require assessment of many factors, includingI project-specific policies, project expertise, customer requirements, project budget and schedule,
and historical factors such as legacy system technology, quality, and relevance to future needs.
A critical goal here is to ensure that the reuse-based and non-reuse-based aspects of the project

are cleanly integrated. The reuse plans should take this goal into account by anticipating process
integration issues, but some project-specific adjustments will typically be necessary.

I
4.1.3 Process Measurement and Evolution

I- The reuse process measurement and evolution activity implements the organizational and project
specific plans for reuse process and product improvement. This activity should be well integrated
into the activities for overall process and product improvement. The activity receives input in

the form of data captured about the asset creation, management, and utilization processes and
products. It also receives lessons learned, asset requirements, process requirements, and any other
form of relevant feedback from individuals involved in those processes. Feedback from the users of
the software products is also input to this activity. The process typically involves:

* Analysis of the input information.

& Identification of problems and opportunities for improvement,

I * Development of solutions.

* Identification of resources required to effect the solution

* Definition of changes to the process or products,

3 * Modification of the plans and the process being followed, and

e Measurement and analysis of the modified process.

Page 16

I
14 February 1992 STARS-TC-04040/001/00

4.2 Asset Creation

3 The goal of asset creation is to capture, organize and represent knowledge about a domain and
produce reusable assets that can be applied to produce a family of systems within that domain. To
be considered reusable, assets may be required to meet or exceed quality measures, may encapsulate
a set of lower-level domain functions, or may be parameterized in some ways to accommodate a
range of design variations with regard to functionality, performance, or other characteristics. In
addition to focusing on the aspects of reusability that are intrinsic to an asset, asset creationU processes may also address more extrinsic asset characteristics by describing when, where, why,
and how a particular asset can be (re)used, and how those factors may vary.

Asset creation can be viewed as the development of a family of software solutions that satisfy a
range of constraints in a problem space. Past and current software development practices often
emphasize development of a point solution that satisfies exactly one set of constraints in the problem

space. The difference between reuse-based development and current practice is analogous to ti
difference in solving a general quadratic equation Ax 2 + Bx + C = 0 and one particular instance
315x2 + 4221x + 189 = 0. Solving a more general problem provides flexibility in handling natural
variation that may occur in the problem space. For example, Ada permits the definition of a generic
stack package that can be tailored with parameters at elaboration time to a specific stack package
meeting constraints such as the type of element to be stacked or the maximum number of elements
to be stacked.

In addition to creating the software assets that comprise a family of solutions, asset creation also3 seeks to record critical information about those assets that can assist reusers in understanding
and applying them. This information is principally in the form of design rationale and domain
experience gathered during development or maintenance activities. This information is encoded
in a form that can be used by persons other than the originators. With current development
practices, important design and domain knowledge is infrequently recorded and maintained. This
leads to situations of improper usage, improper modification, or significant relearning when reuse
or tuaintenance is attempted. Encoding and maintaining domain experience and design rationale
helps reusers match current needs against the variability built into the assets. This variability may
accommodate a diverse set of system requirement variations. For example, an asset may address a
variation in policy such as "whether or not to always seek human confirmation before proceeding" or
may address a broad range of technology variations such as windowing systems, operating systems,
and computer hardware platforms.

In this document, the term domain is used in its broadest sense, to denote an area of activity or
knowledge. The term assct is also treated very broadly. to include not only software components,
but also software architectures, collections of supporting domain knowledge, and just about any

other form of information that can assist the reuse-based development and evolution of software
systems. Thus, the activities identified as part of asset creation include domain analysis, domain
modeling, software architecture and design development, reverse engineering, design recovery, soft-
ware component development, application generator development, and source code translation.
Since the different forms of assets within a domain are usually strongly interrelated, there is typi-
cally considerable interaction and feedback among the members of the asset creation process family.

The remaining paragraphs of this section describe activities within the asset creation family:

Page 17

I
14 February 1992 STARS-TC-04040/001/00

* domain analysis and modeling;

3 * software architecture development;

* software component development;

3 * application generator development;

e asset evolution.I
4.2.1 Domain Analysis and Modeling

I The goal of domain analysis is to develop a domain model, a set of reusable requirements, and a
description of the variability that can be applied to construct solution systems within the domain.

1 Even though there has been significant progress to date in defining domain analysis processes,
domain analysis and modeling still remains a substantial research topic. As noted above, the
term domain can denote a broad set of concepts. Domains have been described by such terms as
application, vertical, horizontal, computer science, and solution. Each of these terms emphasizes
certain concerns and viewpoints. None of the approaches defined thus far brings the various concerns
and viewpoints into a complete, consistent model. What can be said is that domain models aid in

relating domain concepts to possible computer-based solutions.

At a high lev-1, domain analysis is a combination of:

* reverse engineering,

3 knowledge extraction,

* technology and requirements forecasting, and

0 modeling.

At present, most of these activities are human-intensive with few opportunities for computer aid and
automation. The exceptions are mainly rverse engineering activities and assistance in representing
the domain model.

Reverse Engineering

I In order to extract expertise already encoded in legacy systems, existing software solutions may be
analyzed using reverse engineering and design recovery techniques. These methods help identify the3 domain's traditional requirements and any common design and architectural features of existing
solutions. Also, the information resulting from reverse engineering and design recovery activities
can be encoded in the domain model and used as inputs to and considerations for the processes of
asset management (see setLion 4.3) and asset utilization (see section 4.4).

Reverse engineering methods extract low level design information from existing systems. These3- methods identify a software system's modularization, the relationships among the structural ele-
ments, declare/set/use patterns for variables, control flow within structural elements, and scoping

Page 18

14 February 1992 STARS-TC-04040/001/00

-- information. This information can be used to analyze low-level variation in existing solution sys-
tems and to identify essential solution concepts and their interrelationships. The information can
be used to connect requirement choices with regard to their effect on performance, timing, sizing,
and functionality of the resulting systems.

Design recovery methods extract high level design information from existing systems. These meth-
ods identify a software system's data structures and data management patterns and aid in sepa-
rating solution systems' functionality into two categories: the functionality that supports general
domain concepts and the functionality that is fundamental to achieving a computer-based solution.
Information in the first category supports application and vertical domain modeling goals to dis-
cover, validate, and encode concepts, functionality, and requirements from a user's or customer's
perspective. Information in the second category supports horizontal domain modeling goals to dis-
cover concepts, functionality, and requirements from a systems/software developer's perspective.

For organizations concentrating on the evolution of a domain or system, the information resulting
from reverse engineering and design recovery activities can be used to guide subsequent modification
and to provide a degree of continuity as humans enter and leave the organization. Guiding system
modification means nroviding the ability to predict the impact of proposed changes and the ability
to (re)structure in anticipation of new or improved technology. Providing continuity means ensuring
that expertise is not entirely lost as persons move on to other work and that learning periods are
short for new people. This is important because system evolution organizations historically have
suffered from high personnel turnover rates. These high rates persist and are perpetuated by
management and acquisition practices despite the fact that a large majority of system life cycle
costs are attributable to system evolution. Thus, use of reverse engineering methods can be a
significant factor in mitigating the cost of system evolution.

For organizations concentrating on long term production of systems for a specific (most likely
somewhat mature) domain, these methods, by automating a typically tedious, time-consuming,
error-prone mandal analysis, allow humans to focus on the higher-level goal of comparing multiple
existing systems. These comparisons aid in identifying commonalities and patterns of variation in
the domain, and, where several versions of the same system are available for analysis, responses
to changes in technology. This information is critical to development of domain-specific tools
that use composition and/or generation techniques to support implementation of solution systems.
Increasing the number of systems analyzed and compared within a domain increases the likelihood
that an individual domain model will have sufficient depth and breadth.

Knowledge Extraction

In order to capture domain knowledge held by humans and to validate results from reverse engi-
neering, domain experts may be interviewed to define high-level domain abstractions and to verify
the information obtained from the analysis of existing ,ystems.

Processes to support knowledge extraction can be developed by adapting knowledge extraction
techniques used by expert system developers, interviewing techniques used for systems analysis
and requirements elicitation, and general methods used for in-depth interviewing in any discipline.

This is a software craft area ripe for innovation in both methods and tools to support both the

Page 19

14 February 1992 STARS-TC-04040/001/00

completeness of the knowledge extracted and the organization of the extracted information.

Technology and Requirements Forecasting

In order to forecast trends in technology, human experts, the status of evolving standards and tech-
nology supporting them, and other relevant literature may be consulted to ensure that the domain
analysis captures pertinent technology variability information. Trends in technology, standards,
and domain requirements are identified to ensure that the assets remain viable and that a return
on the investment in asset creation will be realized.

If knowledge extraction is a craft, then technology trend forecasting is definitely an art. Short
term forecasts of 9 months to two years may be developed with a reasonable amount of confidence
because of the business cycle. Long term forecasts of more than two years are more difficult to
develop with any confidence.

Modeling

The goal of the modeling activity is to synthesize information gathered from reverse engineering,
knowledge extraction, and technology and requirements forecasting into a domain model. Besides
documenting the important basic concepts of a domain and their interrelationships, the domain
model also includes a set of reusable requirements specifications that define the boundaries of the
problem space, as well as a set of variability descriptions.

Prescriptive processes that support comprehensive model synthesis are almost non-existent, mainly
because modeling is primarily a human creative activity. Processes supporting representation and
documentation of a domain model include vocabulary formation, structured and systems analysis
techniques, entity-relationship modeling, finite state modeling, petri net modeling, information
modeling, data and control flow modeling, etc. Processes supporting validation of domain models
include walkthroughs, expert review, consistency and completeness checking by tools supporting
specific representations, and simulation.

A thorough domain model typically consists of a collection of views or submodels of a domain, where
each view depicts one important aspect of the domain. Views can describe static properties of aI domain, such as a taxonomy of domain components or various static architectural representations,
or can describe more dynamic properties such as control flow and tasking behavior. Views can
represent this information in terms of a variety of different design paradigms, such as functional,
object-oriented, and data flow. Of course, these views can be represented graphically or textually,
as appropriate. The selection of the appropriate set of views for a particular domain is, at present,
a matter of experimentation.

4.2.2 Software Architecture Development

The purpose of this activity is to produce an architecture that can be used to implement numerous
systems for the domain defined by the domain analysis. Although some domain analysis processes

Page 20

14 February 1992 STARS-TC-04040/001 /00

incorporate architecture development directly, it is treated separately here to emphasize its impor-
tance. As noted above, architectural information may be encoded in the domain model, but it also
may be represented external to it, depending on the scope established for the domain model by
the specific domain analysis and modeling approach chosen. In some approaches, domain analysis
produces a high-level architectural framework, leaving more detailed domain architectures to be
defined separately. Alternatively, it may simply not be convenient to include the architecture within
the domain model because of notational differences, perhaps because there are several valid archi-
tectures, each with a distinct notation. In such cases, the architecture(s) are sometimes considered
logically a part of the domain model, even if they are physically distinct.

The process of architecture development seeks to identify a set of software components and their
interactions that can support both the full and minimal set of domain services and objects that
are required [Par79]. Common design and architectural features of existing solutions found during
domain analysis may serve as the starting point for architecture development.

Very generalized, flexible architectures may provide features that permit implementation of a spec-
trum of systems ranging from those satisfying the minimal set of requirements to more intricate
systems satisfying an elaborate set of requirements [Par79]. Such architectures are often organized
in layers to permit consistent, easy addition of advanced capabilities. As indicated above, a domain
may have more than one valid architecture, depending on design approach (functional decomposi-
tion, data-driven, abstract data type, declarative, object-oriented, etc.) or upon sets of mutually
exclusive requirements and constraints.

Domain knowledge often represented in an architecture includes: tasking requirements, data alloca-
tion, user interface, the packaging of domain analysis requirements, and the rationale for selecting
particular variations in the architecture. The roles of users and objects identified in the domain
model will support the definition of the user interface; the triggers, events, and parallelism will
support tasking definitions. Technology supporting traceability from the domain model to the ap-
propriate architecture, detailed designs. and, possibly, software components is an essential feature
of library systems managing such assets.

4.2.3 Software Component Development

The goal of this activity is to develop reusable software components that implement the previously
developed domain-specific architecture. Before this activity is undertaken, reuse planning has
already evaluated whether component development is more appropriate than or complementary
to application generator development or use. Note, however, that reuse-based system evolution
or system integration life cycles may mix both software component development and application
generator approaches, depending upon the complexity and breadth of the desired systems. Reuse
planning activities will also have evaluated whether translation of code from legacy systems may
also be appropriate.

It is assumed that the development processes for software components will follow good software
engineering practices and principles such as separation of concerns and information hiding. The
design and coding guidelines that are available for different programming languages may be used
as source material in defining the software component development processes to be used. These
guidelines assist in defining processes that ensure that there is traceability from designs to source

Page 21

14 February 1992 STARS-TC-04040/001 /00

code, the source code is consistent with the design it is implementing, and the designs and code
take advantage of desirable programming language features. For example, one goal of detailed Ada
designs may be to use Ada packages to hide details of the design while keeping it flexible.

It is also important that the design activity consider data, functions, and modularizations that
may exceed the needs of some systems, in order to build in flexibility and future growth. Both the
design and coding processes should also support guidelines for reusability and software quality that
were identified by the reuse planning processes.

It may also be efficient to create software assets by reengineering existing software code segments or
components that encode information that is not readily accessible any other way. Examples include
critical timing constraints, highly complex mathematics, or esoteric information only understood
by a handful of human experts. It may also be cost-effective to use reengineering to improve the
reusability of high quality software components, since reusability implies a degree of quality but
the reverse is not necessarily true.

In its most simplistic application, reengineering is reduced to translation of existing software from
one computer language (e.g., CMS == Ada, Assembler ==>C) or standard (Fortran66 ==> For-
tran77) to another without affecting data structures, modularization, or program control flow.
More sophisticated reengineering may improve program control flow, lower code complexity, en-
force coding standards, or improve reusability.

Along with coding or reengineering, these software component creation processes should (1) de-
velop related information and (2) maintain traceability between the related information and the
domain and design information. For example, a test driver and test cases should be developed and
maintained as the means to validate the original or evolving software component.

4.2.4 Application Generator Development

The goal of application generator development is to provide a capability that allows a reuser or
application developer to create software (sub)systems by simply specifying needed functionality
using the concepts and terms native to the domain. The point is to allow the end user to specify
"what- is desired rather than detailing "how" the desired effect is to be achieved. This "what"
orientation can also be termed requirements-based. For example, the input language for a generator
addressing the chemical process control domain would feature control law concepts, symbols, and
terminology. A generator supporting interactive construction of graphical user interfaces would
allow the direct specification of user interface abstractions such as menus, popups, buttons, and so
on.

Since the desire is to support statements of what rather than how, application generator development
uses the results of domain analysis and modeling. Whether creating a generator that applies a series
of transformations to a user-provided specification or creating a generator that works from user
directed choices among parameters. the domain analysis and modeling processes supply the needed
vocabulary and relationships among requirement/constraint choices and valid software solutions.

Another factor that drives selection of processes to support application generator development is
the technology that will be used to implement the generator. Depending upon the implementing
technology, processes used may include textual language design, graphical or non-graphical user in-

Page 22

I
14 February 1992 STARS-TC-04040/001/00

terface design, meta-generator usage, application generator tools, graphical language design, expert
system design, and knowledge-based techniques. In short, development of an application generator
is very similar to development of any software-intensive system. This means that software engi-
neering principles, reuse principles, good design processes, validation, and testing are all vital to
application generator development.

4.2.5 Asset Evolution

The results of asset evaluations from the asset management and asset utilization process families
are feedback into the asset creation processes. There should be explicit processes that receive and
analyze these results. The feedback should be used to enhance the appropriate domain model,
software architecture and components, and application generators. The feedback may also be used
to improve or better tailor the processes of modeling, component and architecture creation, and
application generator development to the needs of particular domains or organizations.

3 4.3 Asset Management

The goal of asset management is to acquire, evaluate, describe, and organize reusable assets to assure
their availability to asset creation and asset utilization processes. Asset management activities also
address asset library administration and operation.

I Asset management activities include:

* asset acquisition,

9 asset acceptance,

3 olibrary data modeling,

* asset cataloging,

* asset certification,

library and asset metrics collection.

Ia library administration and operation. and

3 * asset maintenance and enhancement.

3 4.3.1 Asset Acquisition

The goal of asset acquisition is to obtain assets from external asset libraries and other sources in3 support of asset creation and asset utilization activities.

Asset acquisition can support asset creation by acquiring some of the "raw material" used during
the early asset creation activities of domain analysis and software architecture development, and
also by acquiring candidate assets that satisfy the domain model and architectural requirements

Page 23

I
14 February 1992 STARS-TC-04040/001 /00

U! resulting from those asset creation activities. The candidate assets thus acquired may need to
be modified to satisfy the domain requirements, but if they are "close enough" to satisfying the
requirements, such modification may often be cheaper than developing the assets from scratch.

Asset acquisition can support asset utilization activities by acquiring the assets that are needed to
produce systems in a domain, so that they can be made available to utilizers through a domain-
specific library. In an organization where the asset creation processes comprehensively address asset
utilization needs within a domain, asset acquisition typically involves little more than ensuring that
the assets produced during asset creation are easily accessible and understandable by utilizers. In
environments where the asset creation processes do not perform so comprehensive a role, asset
acquisition involves locating and acquiring assets that address utilizer needs not satisfied by the
creation processes. For example, it may be useful to acquire external assets as a result of feedback
from the asset understanding, evaluation, and selection processes (see section 4.4), when no local
asset satisfies selection criteria or existing assets are judged to be too expensive to modify to meet
target system needs. The remainder of this subsection focuses on asset acquisition both to support
asset creation and to provide the latter form of support for asset utilization.

External asset libraries, as well as other sources of potential assets (e.g., projects developing systems
within a relevant domain, commercial or government off-the-shelf products, external individuals or
organizations that voluntarily submit candidate assets, and so on), should be exploited as much as
possible when populating asset libraries to meet particular domain needs. When acquiring assets
from an external library, differences in the data models between the local and external libraries must
be resolved so that sufficient information about the asset can be collected to catalog it properly.
The degree to which the process of acquiring assets from external libraries can be automated is
directly related to the degree of heterogeneity of the local and external library data models and the
level of seamless interoperability between asset libraries, as discussed in section 5.3.

To facilitate the location of useful external assets, library and domain cross-reference information
may be of great interest to the asset acquirer. Having information available about the domains
addressed by external libraries, and also possibly about the specific assets within the libraries,
greatly eases the problem of directly accessing those assets remotely (when there is a high degree of
library interoperability) or of acquiring them for local installation. In addition, such cross-reference
information may promote understanding of how assets already within the local library or assets that
are candidates for acquisition are modeled within other libraries and used within other domains.

4.3.2 Asset Acceptance

The goal of asset acceptance is to ensure that an asset that is a candidate for inclusion in a library
satisfies all relevant legal and policy constraints and that there is sufficient information available
to catalog the asset.

The purpose of many of the library management policy constraints is to ensure that assets in a
library satisfy at least minimal criteria for quality and suitability for use in asset utilization activi-
ties. Such constraints are generally imposed internally by an organization and often are expressed
in the form of requirements about the descriptive information that accompanies a candidate asset.

Legal constraints, on the other hand. are generally imposed by external organizations and focus

Page 24

I
14 February 1992 STARS-TC-04040/001 /00

primarily on restricting the access, distribution, or use of an asset, independent of its perceived
technical quality or suitability. Consideration of legal constraints is particularly important for
assets acquired from external sources such as public, government-supported, or commercial asset
libraries, or sometimes even other projects within the same organization. In any of these cases,
patents, copyrights, distribution rights, liability requirements, royalties, and other related issues
may complicate or restrict the ability to reuse a particular asset.

Policy and legal constraints can interact when, for example, an organization establishes a policy
that assets with certain legal constraints are inappropriate for use in systems produced by the
organization.

Folowing are examples of asset information that may be required for asset acceptance:

o abstract,

I- o author/ownership information,

* author certificate of originality,

o copyrights/patents,

o distribution rights,

o distribution restrictions,

o liability statements for use/misuse,

o royalties/license fees,

o maintenance agreements,

o environmental dependencies, and

o dependencies on other assets.

4.3.3 Library Data Modeling

The goal of library data modeling is to develop a data model for describing assets within a library,
primarily on the basis of their domain-relevant characteristics. A principal part of the library data
model is the library classification scheme, which provides library users with an organizing structure
for locating domain assets.

Classification knowledge can be represented in a variety of ways, including entity-relationship-
attribute models, semantic networks, simple taxonomies, faceted schemes, and object-oriented class
hierarchies. Substantial classification knowledge is typically collected during domain analysis and is

captured in the domain model. The domain model usually serves as the basis for an overall library
data model, and some library systems use the domain model (or major aspects of it) directly as
the library data model. More typically, development of the library data model requires augmenting
the domain model with additional information. Such information might reflect the administrative
needs of the library itself; some examples of this are library usage metrics, user feedback data, and

Page 25

14 February 1992 STARS-TC-04040/001/00

the information required for asset acceptance. Alternatively, the library data model might augment
the domain model with additional views of the domain to facilitate asset searching. For example,
a domain model might define a classification scheme that is strictly taxonomic in nature, but if
a domain architecture has also been developed, an alternate classification scheme can be devised
based on functional relationships in the architecture. The use of multiple classification schemes
within a single library provides library users with alternative views of the domain and alternative
strategies for locating domain assets.

It can be valuable for a library data model to differentiate among assets based on criteria other
than domain functionality. This allows users to search for assets with desirable non-functional
characteristics such as a high degree of portability, high reuse potential, short execution time, low
storage utilization, and so on. Additionally, it is often useful to establish relationships between
heterogeneous classes of assets that are at different levels of abstraction or address different life
cycle activities. For example, it may be desirable to relate generic code assets, their corresponding3 designs, and their test cases.

Library data modeling is an iterative process. As legacy systems are examined and incorporated
into the application domain, as new external assets are acquired, or as problems are identified
with the existing data model, the model may need to evolve. The data modeling process should,
therefore, support modifications to the model.

4.3.4 Asset Cataloging

Asset cataloging is broken down into three steps: asset classification, asset description, and asset
installation.

9 Asset classification is the process of determining where an asset belongs within the library
classification scheme. Once the appropriate place(s) in the scheme is/are found, the asset
is said to be classified. For example, classification within a faceted scheme might involve
identifying a term, or set of terms, for each facet.

* Asset description is the process of creating, capturing, or adapting all the information that
is needed to describe the asset in the context of the library's data model, once the asset has
been classified. Some of this information may need to be validated against library standards,I to the extent that the information is not checked during the asset acceptance process. Asset
description might also involve identifying dependencies on and relationships to other assets.

o Asset installation is the process of installing the classified and described asset in the library
system. This involves capturing the asset and its descriptive information in some kind of data
base or other persistent store, and may also involve bringing the asset under configuration
management control and performing other environment-specific operations.

3 Procedures should exist for dealing with assets that are improperly catalogued, either through error
or because the library data model has changed. Other events that may prompt asset recataloging
are changes recommended by users during asset utilization and difficulties in finding particular
assets or classes of assets, as revealed by library metrics.

Page 26

I
14 February 1992 STARS-TC-04040/OO 1/00

4.3.5 Asset Certification

I The ultimate goal of software asset certification is to guarantee that the assets implement their
requirements and that their execution will be error free in their intended environment. Practically,
asset certification is a multi-stage process that gradually approaches but may not achieve that
ultimate goal. Various levels of certification can be defined, each associated with successively
more stringent sets of certification criteria. To reach a particular level, assets must satisfy the
corresponding criteria. As each certification level is reached, an asset becomes more trusted in the
sense that there is increased confidence that it meets its requirements without error.

The process of certification may be applied after asset acceptance and cataloging have occurred.
Since asset certification is a multi-stage process for assessing assets and motivating their evolution
towards ever-increasing levels of trust, asset certification is typically an ongoing process that con-

tinues while an asset is available through the library system. In such cases, the certification level
of the asset at any given time is clearly specified within the asset description.

* Examples of criteria that may be appropriate for lower levels of certification include:

* Does the asset include requirements/specifications/code?

* Istheasset accompanied by test cases and/or test scaffolding?

* Does the asset adhere to some sanctioned set of reusability guidelines?

3 Does the asset achieve metric standards for reusability, complexity, portability, etc.?

* Does the asset come with a maintenance agreement?

* Does the asset come with a documented usage history?

3 Examples of criteria that may be appropriate for higher levels of certification include:

* Was the asset developed using some sanctioned methodology?

I- * Is the asset accompanied by formal specification and verification artifacts,

* Does the asset come with documented evidence of frequent, successful reuse?I
* Is the asset guaranteed for reuse by some organization?

* *Are disclaimers of responsibility for the behavior of the reused asset either waived or omitted?

5 4.3.6 Library and Asset Metrics Collection

Library metrics are used to measure the effectiveness of library management processes, tools, and
policies. Asset metrics are used to measure the characteristics and effectiveness of individual assets,
such as their reusability. The goal of collecting such measurements is to improve the effectiveness
of the library in supporting reuse processes within client organizations.

IA general scheme for measuring and improving library effectiveness is:

Page 27

14 February 1992 STARS-TC-04040/001 /00

1- 1. Define an objective measure of library "success".

2. Take a baseline measurement.

3. Predict that a change to a process, tool, or policy will be an improvement.

I 4. Install the changed process, tool, or policy.

5. Take new measurements and compare them to the baseline measurements.

I 6. Evaluate whether to retain the change or revert to the old approach, based on the measure-
ment comparison.

IThe library effectiveness measurement and improvement strategy for a particular library is defined
during the reuse planning process discussed in section 4.1. A library can provide library andj asset metrics collection and storage capabilities to support this strategy. These capabilities can be
provided in a number of ways, such as:

S* Automated, wherein the library recognizes, records, and acts on the occurrence of relevant
events (e.g., asset query, asset extraction, remote library access) without user intervention.

I Imperative, wherein a library user or administrator performs some action (e.g., a metrics tool
invocation) to collect needed data, and then directs the library to store or process the data
appropriately.

* Interactive, wherein the library explicitly requests relevant information (e.g., assessment of
asset reusability) from library users.I

In addition, some library effectiveness measurements (particularly those relating to the effective-
ness of particular assets) may require proactive solicitation of information from users by library
administration personnel during or after asset utilization.

4.3.7 Library Administration and Operation

The goal of library administration and operation is to assure the availability of the asset library
for asset creation and asset utilization activities. Only those procedures that are specific to asset
libraries (as opposed to software engineering environments in general) are discussed below.I
Library Access by User

I Access to asset libraries, asset library subdomains. and individual assets may have to be restricted
per user or group of users. For example, users or user groups (e.g., companies) may have paidj license fees allowing them to access specific assets. The library system needs to store such in-
formation in order to automate such license restrictions. Other access restrictions that a library
system might automatically enforce include government security and company proprietary policies.

I These kinds of access restrictions imply the need for libraries to institute strong user identification

I Page 28

I
14 February 1992 STARS-TC-04040/001/00I
and authentication policies and mechanisms, in concert with administrative procedures for man-
aging information about users. If the library system can not automatically enforce needed access
restrictions, procedures will have to be defined to enforce access policies in a more manual fashion.

*Library Access by Role

Access to asset library services should be restricted on the basis of user role. For example, an asset
utilizer should not be allowed to modify the library data model.

Following are a few typical library roles:

" The data modeler develops and maintains the library data model. The data modeler should be
knowledgeable in the domain and have an appreciation of relevant library science concepts. If
the asset library supports access to other asset libraries, then the data modeler might maintain
domain-specific cross references to those external libraries, in a manner that is understandable3 to local users.

" The cataloger accepts, classifies, and describes assets and installs them in the library.

3 e The certifier assesses and assigns certification levels to assets within the library.

" The utilizer identifies, understands, and evaluates assets against specific requirements, and
extracts suitable assets to utilize them in constructing systems within the domain supported
by the library.

" The reuse promoter provides incentives for individuals and organizations to use and contribute
to the library. Among other activities (see the discussion of reuse incentives below), the reuse
promoter may monitor a variety of library and asset metrics (e.g., frequency of library use,
extraction of particular assets, failed queries) in order to assess user satisfaction with library
capabilities and identify ways in which the library can be improved.

Configuration Management

Configuration management is an important and potentially complex process within a domain-
specific reuse-based life cycle model. All assets, ranging from the high level domain model and
architecture assets to their low-level constituent components, must be kept consistent with one
another to ensure the consistency and integrity of systems built from the assets. The assets will
typically be long-lived, with the potential for creation of multiple versions or variations of the same
asset. These variations will need to be maintained concurrently, and the consistency of relationships
between each particular variation of an asset and other library assets (and their variations) will
also need to be maintained.

A related library service is asset subscription. Asset subscription allows users to be informed of
all changes to an asset as it evolves, including identification of errors, changes in its classification,
development of different variations, and changes to related metrics.

Page 29

I
14 February 1992 STARS-TC-04040/00 1/00

- Asset Interchange

For some libraries, procedures will need to be defined to interoperate with remote asset libraries
(see section 5.3). Such interoperation may take a variety of forms, including directly accessing
the assets in the remote libraries in a seamless manner, importing assets from those libraries for
local installation, or exporting local assets to those libraries. Before such interoperation can be
effective, the policies and data models of the remote libraries may need to be evaluated. If remote
library policies and data models are similar to those of the local library, and the remote library
supports standard library interfaces (such as the STARS ALOAF interfaces), interoperation with
the remote library may simply be a matter of maintaining network connectivity. However, as the
library policies and data models diverge, the degree of interoperability between the libraries is
likely to become progressively lower, ranging from the ability to automate the exchange of assets,
to maintaining electronic catalogs (called "Yellow Pages") of external libraries and assets, to simply
publishing paper catalogs and requesting that assets be sent on tangible media. As the latter point
implies, procedures may need to be defined for non-network-based exchange of assets via a variety
of media such as tapes, diskettes, and paper.

Library Support Procedures

A variety of operational processes may be defined to support the basic activities of the asset library:

the generation of a paper catalog of assets, for those remote libraries and users without
network connections,

the conversion of assets between a variety of formats such as plain ASCII text, SGML, graph-
ics, postscript, and paper,

3 the distribution of assets in a variety of formats via a number of different media,

o administration, maintenance, and upgrades of the library system,

o the conversion of internal tool data into forms acceptable to the library system so that the
tools can be integrated with the library and so that, for example, design or architecture assets
can be viewed graphically,

1 the integration of the library system with both a software engineering environment (SEE)
and a set of cooperating tools operating either in the local SEE or as "subscriber" tools on
remote platforms, and

o the definition, integration, and maintenance of test and metrics tools to support asset certi-
fication and asset evaluation processes.

Reuse Incentives

Different library efforts will have different goals for acquiring and attracting users and asset con-
tributors. A library that has a well defined and localized function to make asset creation products
available to asset utilizers within the context of a single domain in a small organization may have

Page 30

I
14 February 1992 STARS-TC-04040/001 /00

relatively little need for instituting reuse incentives. On the other hand, a library that is trying
to promote reuse within a large organization or across multiple organizations by making a wide3- variety of assets available and offering a wide variety of value-added services will need to have a
strong incentive program in place in order to attract new users and contributors and achieve its
goal of promoting reuse across a broad audience.

One broad category of incentives that can be employed is to "push" reuse by instituting a reward
system, wherein rewards such as financial remuneration or organizational privileges are provided
to asset contributors and/or reusers (either individuals or organizations). The objective of this
approach is to encourage a spirit of reuse that will eventually thrive on its own, independent of the
reward system.

I Another broad category of incentives is to "pull" reuse via demonstration of effectiveness. This
involves showing organizations the benefit of instituting a reuse program (and of using a reuse
library) by directly demonstrating or documenting the successes and benefits of reuse experienced
by other organizations.

On a lower level, an important method for incentivizing reuse through use of the asset library is toIinstitute a quality management and improvement program spanning all library features and services.
This involves monitoring user satisfaction with library features and services (e.g., library tools and
classification schemes, asset cert;.roation and extraction procedures), and taking appropriate action
to improve capabilities whenever dissatisfaction is apparent.

1- 4.3.8 Asset Maintenance and Enhancement

The goal of the asset maintenance and enhancement process is to iteratively improve the assets in
the library relative to user and domain needs.

Problems identified during the asset utilization process, as well as suggestions for improvements
to assets, are feedback to the asset maintenance and enhancement process. Such problems are
identified via reports from reusers and via indicative metrics. Some of these problems can be
handled solely by the library staff, through changes to the library data model or :isset certification
process. or by correcting deficiencies in library-related tools or processes.

Other simple problems with assets, such as straightforward execution errors, mismatches between
specification and function, performance inadequacies, and documentation problems can also often
be corrected by the library staff, as long as asset creators are notified of any changes. Asset creators
should also be made aware of problems relating to the classification and description of library assets,

_ because those problems may imply changes to the domain model on which the library data model
was based. More serious asset problems are given directly to asset creators for evaluation, leading
to potentially substantial revision of assets.

34.4 Asset Utilization

In this section, we examine the asset utilization process family and its constituent processes that
focus on the utilization of assets to develop software systems and related products. The processes

3 Page 31

I
14 February 1992 STARS-TC-04040/001/00

in this family are divided into the following categories:

3 system composition,

e system generation,

1 asset identification,

* asset understanding, evaluation, and selection, and

* asset tailoring and integration.

There are two primary methods of asset utilization, corresponding to the system composition and
system generation processes listed above. As sections 4.2 and 5.2.2 point out, the asset utilization
method(s) that a particular organization uses will be strongly determined by the asset creation
methods that are employed. In general, through their reuse planning activities, organizations
select, tailor, and evolve their asset utilization processes in concert with their asset creation and
management processes; all these processes should be mutually compatible and comprise a consistent
reuse strategy. Note that the two asset utilization methods are complementary and can both be
employed within the same domain. For example, particularly well-understood subsystems within
a domain may be amenable to generation, whereas a complete system may need to be composed
from generated subsystems and other individual assets.

Asset identification, asset understanding/evaluation/selection, and asset tailoring/integration are
processes subordinate to the two primary asset utilization methods and are approached differently
within each method. This section will address each utilization method separately and discuss
the subordinate processes within the context of each method. First, we examine the composition
method.

4.4.1 System Composition

Asset-based system composition is a process in which the software engineer constructs new prod-
ucts (e.g.. requirements, design, code. tests, documentation) from previously developed or newly
generated parts. This is typically done by identifying. understanding, evaluating, and selecting
appropriate generalized domain assets and tailoring and integrating them to meet specific system
needs. The domain model supports this process by describing a variety of domain characteristics,
which can include:

* the low-level domain assets (code modules. etc.) that form the raw material from which new
system products will be created:

* the higher-level assets such as generic architectures that can be used as organizing frameworks
for new systems in the domain: and

o the heuristics, rules of thumb, examples, rationale, and other inform tion that can assist the
engineer in constructing systems in the domain.

The processes of asset identification. asset understanding/evaluation/selection, and asset tailor-
ing/integration in the context of system composition are described below.

Page 32

14 February 1992 STARS-TC-04040/00 1/00

Asset Identification

The identification of assets for system composition is driven both by the particular needs that apply
during the current life cycle activity, and by the degree to which reuse has already been employed in
preceding activities. For example, early in the development effort, there will typically be a need to
produce a set of system requirements, which can be done in a reuse-based environment by tailoring
generic domain requirements to meet specific system needs. When this is complete, there will be
not only a new system requirements specification, but also traceability to the generic requirements
that were reused, thus establishing an initial path to other elements of the domain model (and thus
to other assets) that will apply during later life cycle activities.

To identify and retrieve reusable assets, engineers must be able to describe their needs in terms
of the domain model developed during asset creation, which defines the logical organization of
the asset library. Once the needs are described, the library is searched in whatever manner is
appropriate until a satisfactory set of candidate assets is identified and retrieved for evaluation.

If previously reused assets have provided sufficient traceability within the domain model to other
assets that meet current needs, the asset description and searching process will be relatively trivial.
One way to achieve strong traceability during asset utilization is through the use of a generic

domain architecture to guide construction of the new system. The architecture essentially serves as
a system template or framework identifying the key architectural elements of the domain and sets
of candidate assets that can be used to implement those elements in target systems. Ideally, a user
would only need to visit each element of the architecture in turn and select the most appropriate
asset available for that element in order to instantiate the desired system. However, in practice, the
architecture may not be complete enough or the variation in the domain may not be well enough
understood to allow such an automatic approach (in fact, if it is that automatic, the system is an
excellent candidate for generation techniques).

More commonly, the domain model/architecture will indicate the overall structure of typical systems
within the domain and provide some information about the characteristics of individual elements.
However, this information may be incomplete, at too high a level to immediately indicate appropri-
ate candidate assets, not have sufficient scope to address all the needs of the target system, define
a need for assets that are not in the library, or possess a variety of other shortcomings. More prob-
lematic is the case where the domain model provides little or no focused architectural information,
but rather defines a diffuse set of asset interrelationships which the user must carefully interpret
to infer overall system structure. Under these kinds of circumstances, describing and searching for
desired assets becomes challenging.

The initial challenge when there is little traceability information available is to determine what is
needed. One approach to this problem is to browse the library (and thus the domain model) to
become more familiar with the assets, their structure, and their interrelationships. It is possible3 that browsing alone may reveal the assets that are needed, but the domain model is typically
such a rich information space that other search methods may often need to be employed. Among
these are traditional database-style queries and on-line (possibly knowledge-based) assistance in
understanding and navigating the domain model. The understanding of the domain model acquired
while browsing can help the engineer to formulate queries; conversely, the results of queries may
help direct the engineer's attention towards portions of the model that are best browsed (possibly3 with on-line assistance) to achieve full understanding of certain assets and their interrelationships.

5. Page 33

14 February 1992 STARS-TC-04040/00 1/00

At times, analysis of the domain model may indicate that other domains or other libraries need
to be browsed or queried to obtain useful assets. At this point, the notion of seamless library
interoperability, discussed in more detail in section 5.3, comes into play. Other domain-specific
libraries, which may be locally or remotely located, will need to be browsed and/or queried in a
manner similar to the initial library even though they may have substantially different underlying
structures, and a high level of seamlessness between libraries will allow the engineer to perform
these activities without being strongly aware that such differences exist or that the libraries may
be widely distributed on a network.

The engineer, while browsing and posing queries in this seamless environment, will at various times
locate a set of candidate assets worthy of detailed understanding and evaluation. Sometimes this
set contains more assets than the engineer can reasonably inspect, so the search criteria must be
restricted, either by narrowing the browsing focus or restricting the scope of the query. Similarly,
when the engineer locates no assets in a given context, the search criteria can be broadened until
some assets are identified. If these assets are obviously not applicable and all relevant criteria have
been considered, there are likely no existing assets that meet target system needs, and developing
from scratch is warranted.

The search criteria mentioned above can be divided into concept and context criteria. Concept cri-
teria define the abstract services (features) and capabilities of the desired assets, whereas context
criteria define more specific asset constraints (e.g., functional limitations, operational constraints,
non-functional requirements). Concept criteria are usually needed to identify the principal func-
tional characteristics of desired assets, while context criteria are used to narrow the set of similar
assets satisfying a given set of concepts.

Asset Understanding, Evaluation, and Selection

The engineer should attempt to understand in detail what each identified asset provides that meets
system needs. Asset understanding involves a thorough analysis of an asset's description, as well
as analyses of the asset itself and of related assets and other supporting data. Asset description
information to be analyzed might include complete, detailed values of the attributes that can be
inspected and queried during the asset identification process, as well as asset abstracts, detailed
asset interface descriptions, usage histories and problem reports, metrics and quality data, and a
variety of other items.

When analyzing assets themselves, an asset can be viewed in its raw source form (e.g., the source
code of an Ada package specification) or can be viewed using alternative methods with the assistance
of appropriate tools. Examples of such tools are hypertext systems, design diagramming tools, and
word processors or more sophisticated (e.g., SGM L-based) document authoring systems. Naturally,
for such tools to be used, the asset management process must store with each asset the underlying
data appropriate for each tool.

Another aspect of asset understanding is the area of asset quality and assurance. This may involve
the inspection or the on-line computation of a variety of metrics for an. asset, and may also involve
the tracing and inspection of corroborating assurance information, such as test results, formal
specifications, formal or informal proofs, and the results of any formal certification or accreditation
processes which the asset (in the context of systems or subsystems of which it was a part) may

Page 34

I
14 February 1992 STARS-TC-04040/001/00

have undergone.

The engineer may also want to understand the dynamic behavior of the asset. Inspection of
behavioral specifications may be sufficient for this, but other approaches include the use of dynamic
assessment tools to simulate the behavior of the asset under realistic conditions or the use of test
harnesses to actually execute the asset with representative data to provide the engineer with live,
hands-on feedback. The latter approach may be useful for better understanding both the functional
and non-functional characteristics of the asset. In particular, non-functional characteristics such
as performance are often addressed unconvincingly, if at all, in the static asset description, and
are best understood through hands-on use. As is true for asset viewing, these approaches require
significant support from the asset management process to provide the appropriate tools, harnesses,5- and underlying data.

Asset evaluation is the process of applying the knowledge gained about an asset through the asset
understanding process to evaluate in detail how well the asset meets target systems needs. The£
needs may be expressed in terms of the concept and context criteria formulated during the asset
identification process, possibly augmented with criteria that are not easily expressed in concept3and context terms but can be addressed through careful asset understanding. Some additional
criteria may be subjective or intuitive judgements by the engineer based on his or her individual
experience with the domain. As a result, aspects of the asset evaluation process may be subjective
in nature. Some of the more objective approaches include comparing the asset against system needs
with regard to the quantity of services provided, the specific manner in which services are provided,
the time and space utilization of the asset, the variability and/or ease of modification of the asset,
how well the asset and its related assets match requirements in other system development activities
(e.g, maintenance documentation, test cases), and a variety of other factors.

If one or more assets meet all needs, the engineer selects the most appropriate asset for integration.
If no asset meets all needs, the engineer must assess whether any particular asset is "close enough"
to system needs to justify its reuse. This judgement may have some objective aspects, but may also
be highly subjective. The organization may establish economic criteria for making such judgements,I based on some economic model of the cost of modifying reusable assets. At the end of the evaluation
process, either an asset will be selected for reuse by satisfying sufficient criteria, or a decision will
be made to develop that particular aspect of the target system from scratch (preferably in the formI
of a reusable asset that can be incorporated into the domain model for reuse in future systems).

As an example of the asset evaluation and selection process, in a hard real-time system, asset A
may meet the functional need but not the performance need, while asset B may provide only part
of the functional need but meet the performance need. The engineer must evaluate the trade-off
between modifying asset A to meet the performance need, adding the necessary functionality to

1 asset B, or constructing a new asset C that provides the functionality missing in asset B. This is
not a simple task because it depends on many factors, including the adaptability of assets A and5- B, the structure of other assets, and the data dependency between assets A and B and other assets.

3Asset Tailoring and Integration

Once an asset has been selected for reuse, it will usually need to be tailored to fit the specific
requirements of the target system. and then will need to be integrated into the system. These

3Page 35

I
14 February 1992 STARS-TC-04040/001 /00

activities typically overlap to some degree, and often the distinction is blurred.

3 Asset tailoring comes in two forms, either or both of which may be applied to any given asset:

anticipated If the asset encapsulates anticipated variations in systems within the domain in some
1 formal way (such as through the use of parameters), each variation must be narrowed appro-

priately, using the provided formal mechanisms, to meet specific target system needs.

3 unanticipated If target system needs lie outside the boundaries of the variations anticipated by
the domain model (including, for example, new features where no variation was anticipated),
the asset must be modified to meet those needs.

To perform anticipated tailoring, the engineer must understand what the variations are and how the
mechanisms for narrowing them are used. This information should be included in the domain modelIin the form of "reuse instructions" for the asset, which may be augmented by examples. Param-
eterization (interpreted broadly) is the mechanism most commonly used for anticipated tailoring.3 Examples of parameterization include:

* run-time parameters that are passed procedurally to the asset during system execution,

I specifications, macros, data files, or command-line arguments that are interpreted at run-time
to produce desired behavior (e.g., initialization files, document style sheets),

3 * compile-time parameters that are passed to the asset to produce a system-specific instantiation
of the asset (e.g., Ada-style generics), and

3 installation parameters that control system-specific configuration of the asset (e.g., variables
controlling conditional compilation).

In addition to parameterization, another technique that can be used for anticipated tailoring is
hand modification of the asset in accordance with precise instructions. An asset tailored in this
manner is typically called a template.

Even with a good set of reuse instructions, some experimentation may be appropriate while tailoring
assets using any of the above techniques, to ensure that the tailoring is done most effectively,
particularly if the relevant target system requirements are not well understood in advance.

Unanticipated tailoring is more of an ad hoc process in which the engineer assesses the asset's
shortcomings relative to system needs and then employs whichever strategies are appropriate to
tailor the asset to the needs. This usually involves hand modification of the asset to add desired

capability or remove undesired capability. Modifications may be needed to both the concepts
and context of the asset (defined in the discussion of asset identification above). Context factors
that may need to be addressed include: performance, environmental considerations, and safety,
reliability, and other quality factors.

Although an asset's limitations may be recognized during the asset identification and understanding
processes, the full implications of those limitations may not become clear until the unanticipated

Stailoring Process is undertaken. At that point it may be appropriate to revisit the decision of

3m Page 36

I
14 February 1992 STARS-TC-04040/001/00

whether to reuse the asset or develop the desired capability from scratch, depending on a variety of
technical and economic considerations. If the decision is to reuse the asset, the preferred approach3 is to provide feedback to the asset creation process so that the asset and the domain model will
be modified to take into account the new variations that the target system has revealed, thus
benefitting future development efforts in the domain.

Many of the tailoring activities already discussed are, in more general contexts, often considered
aspects of system integration. For the purposes of this discussion, asset integration is the process of
making tailored assets work with other system components in the context of a system architecture.
Thus, while tailoring focuses more on the adaptation issues local to a particular asset, integration
addresses adaptation and consistency issues global to an entire system or subsystem. In this view,
the tailoring process is subservient to the integration process in the sense that integration may
require several iterative refinements of tailoring to ensure that all system needs are being met.

Integration may involve the development of integration modules (sometimes called "glue code") to
allow system components to interoperate when asset tailoring is inappropriate or insufficient for that
purpose. One of the most commonplace integration strategies is encapsulation. In this approach,
an asset that does not present the desired interfaces to its would-be clients is encapsulated by code
that does present the desired interfaces and transforms the data passed through those interfaces into
(and out of) formats that the embedded asset can understand and process appropriately. Ideally,
integration modules will provide feedback to the asset creation process to impact domain model
evolution.

1 4.4.2 System Generation

3System generation is a process for producing systems or subsystems that ideally incorporates all
the variation in a domain into a set of parameters expressed in terms of a specification language.
A generation tool accepts specifications that define values for the domain parameters and resolves
the variation accordingly to generate components of the target system. The specifications are
generally non-procedural in nature and can be expressed in a number of different forms (e.g.,
textual, graphical, form-based, etc.). These specifications in effect define a set of specific target
system requirements that lie within a set of more generic domain requirements embodied in the
specification language. Since the target components are derived directly from a specification of
system requirements, generation is often referred to as requirements-based reuse.

As noted in section 4.2, the variations captured in the specification language were identified during
domain analysis, but instead of building conventional reusable assets, the domain engineer codified3 all variation in the generator. This is generally only possible when the variation and mappings of
the variation to solutions are well understood. Thus, system generation methods are usually only
applicable in highly mature domains or subdomains. It is not uncommon in larger domains for there5 to be a number of small subdomains in which generation methods are applied. In these cases, the
generation process is part of a larger system composition process. In fact, the generation process
can be viewed as a very sophisticated form of the anticipated tailoring process described in section

S4.4.1. However, we view generation as sufficiently distinct and important to merit consideration
separate from composition methods and more conventional asset tailoring techniques.

5 For the purposes of this discussion, there are two key differences between generation and conven-

3 Page 37

I
14 February 1992 STARS-TC-04040/001 /00

"- tional anticipated tailoring:

1l 1. Generation typically involves much more sophisticated and extensive parameterization.

2. Generation employs a separate tool to generate the products that are actually integrated into
the system.

A key point with respect to (2) is that, with generation, the asset that an engineer reuses is
the generator tool itself, rather than some adaptable form of the eventual system product. The
generator in effect provides an encapsulated black-box view of some portion of a domain, obviating3the need to find and compose a set of conventional assets in that subdomain.

Since generator tools are viewed as assets within a domain model and encapsulate some portion of a
domain architecture, the overall system composition process must consider them from a perspectiveIsimilar to that with which it regards other assets to be composed. However, generation assets pose
issues that are significantly different from other assets with respect to the asset identification, asset
understanding/evaluation/selection, and asset tailoring/integration processes. These differences
are addressed below.

IAsset Identification

The asset identification process for generator assets is not greatly different than for other assets.
Any given application of the process may well identify a mix of conventional and generator assets
without strongly distinguishing between the two. The primary differences revolve around the3 following characteristics:

e Generator assets tend to have larger scope than individual conventional assets, in that theyI may encompass entire subdomains and encapsulate substantial portions of architectures. This
tends to simplify the asset identification process by reducing the total number of assets to be3 considered and reducing the complexity of their interrelationships.

* Generator assets tend to have well-defined roles within domain architectures, so the process
of identifying them is generally highly amenable to architecture-based search.

1 Generator assets tend to capture variation more extensively than conventional assets, since
the variation in their domains of application is so well understood. This breadth of scope may
yield some difficulty in describing the asset concisely yet comprehensively, which may have
some negative impact on the engineer's ability to determine whether the asset meets system
needs. This issue also impacts asset understanding.

* Generators typically are not readily divisible or decomposable, and their relatively large
scope may remove from reuse consideration many individually useful lower-level functions that
generators encapsulate. If this is foreseen as a problem within a given domain, some lower-levelI_ functions may be represented separately within the domain model in the form of conventional
assets; in fact, some generators may construct their large-scale system components from such3 lower-level assets.

3 Page 38

14 February 1992 STARS-TC-04040/001 /00

Asset Understanding, Evaluation, and Selection

From a high-level perspective, the understanding and evaluation of generator assets is very similar in
principle to the analogous processes for more conventional assets. However, at a more detailed level,
some key aspects of the processes are significantly different, reflecting the conceptual differences
between the two kinds of assets.

The process of analyzing the descriptive information provided for a generator asset within a library is
generally the same as for other assets, in that it involves the inspection of asset attributes, abstracts,
usage histories and problems reports, metrics and quality data, and so on. One issue here is whether
the information describes characteristics of the generated products or of the generator itself; full
understanding of the asset requires information about both these aspects, but depending on the
generator and the role it plays in systems within the domain, an emphasis on one or the other aspect
may be sufficient. A related issue is that generator assets generally distinguish sharply between
two different sets of interfaces: the tailoring interfaces to the generator itself (e.g., the specification
language, rules for invoking and interacting with the generator tool), and the integration interfaces
to the generated products (e.g., procedural interfaces to be invoked at run-time). The engineer
should work to understand both sets of interfaces.

With respect to the tailoring interfaces, the availability within the library of good documentation
about the nature and usage of the generator and the specification language, supplemented with
examples of specifications or tool interaction sessions, is highly valuable to the engineer during the

asset understanding process. Such materials constitute the "reuse instructions" for a generator
asset.

Unlike conventional assets, there is generally little or no need for engineers to inspect generator
assets in their source form, since the generators themselves will not be part of the target system.
The processes analogous to source code inspection for generator assets are inspection of sample
specifications and inspection of generated products.

IInspection of sample specifications is done using whichever tools are available and appropriate for
the particular form(s) of specification that the generator accepts. If specification is performed in-
teractively, the generator tool itself is used, possibly in conjunction with scripts to present sample
tool interaction sessions. During this activity, the entire generation process, yielding sample gen-
erated products, may be undertaken to further enhance understanding of the asset. In addition,
experimentation with the specification language is also appropriate at this time, either through
modification of the sample specifications or the development of small test specifications.

The inspection of generated products may be of interest to the engineer for purposes of general
asset understanding, assessment of the quality of the generated products, or other similar reasons.
However, such inspection is more often done to assess how easy or difficult it will be to modify
the generated products if the engineer suspects that some unanticipated tailoring of the products
will be necessary. Sample generated products are either provided in the library or will need to
be generated by the engineer via the process noted above. Issues surrounding the modification of
generated products are addressed in the discussion of asset tailoring below.

Another important contributor to generator asset understanding is the actual execution of sam-
ple generated products using representative data to obtain live feedback about the functional and

1Page 39

14 February 1992 STARS-TC-04040/001/00

non-functional characteristics of the asset. This is particularly important for assessing asset per-
formance, since it is not uncommon for assets possessing a high degree of generality to exhibit poor
performance.

Some of the issues that must be addressed in evaluating whether a generator asset meets organiza-
tion and target system needs are:

" Is the scope of the asset too large or too small? It may be too small if not all concept criteria
are satisfied. If the asset addresses many more concepts than are needed within the target
system, or if it addresses the needed concepts in too general a fashion, it may be unable to
satisfy some context criteria (e.g., performance requirements) as a result.

" If the asset is perceived as not fully addressing target system concepts and context, what
alternatives are available and what are the costs and benefits of each? Specifically, should
the generator be modified, the generated products be modified, additional complementary
products be developed, or the generator not be utilized at all in favor of composition of
lower-level assets and/or newly-developed products?

* Is the generator sufficiently versatile to meet system evolution needs? If not, again what are

the alternatives and their costs and benefits? One area this addresses is the evolution of base
technology and whether the generator will need to evolve accordingly.

In some cases, these issues are largely moot, because the generator asset was developed during an
asset creation process to address very specific asset utilization needs within the domain. Even in
these cases, the asset should frequently be evaluated to ensure that it evolves to keep pace with
changing technology and customer requirements.

Asset Tailoring and Integration

Naturally, most tailoring of generator assets is of the anticipated variety. To tailor a generator
asset to produce a desired system component, the engineer must use the asset's tailoring interfaces
to express decisions about the system requirements within the generator's scope. This typically
involves either creating a specification or interacting with the generator tool (e.g., to fill out a form
interactively). The engineer may apply the knowledge gained about the asset's tailoring interfaces
(through its "reuse instructions") during the asset understanding and evaluation process to tailor
the asset immediately, or may engage initially in further experimentation to determine how best to
reuse the asset.

Once the engineer has expressed the decisions about the system in whatever form is appropriate,
the generation tool determines the validity of these decisions and ensures that the decisions are

mutually consistent (in some cases, the language itself guarantees this). The decisions an engineer
may make include the selection of data types, ranges, and formats, specific system services, and
data and service interrelationships. The generator uses these decisions to resolve the variations
it encapsulates and then generates the appropriate system components. The generator may not
produce all needed parts of the system components being generated, but missing pieces should be
easily identifiable by the engineer. For example, many existing parser generators generate code
that recognizes the constructs of the language being parsed, and provides well-defined methods

Page 40

I 14 February 1992 STARS-TC-04040/001 /00

I
for passing control to user developed code that performs additional translation functions, such as
semantic analysis. Another example is that generators may not provide the documentation (e.g.,
design documentation) required by a project, or may not provide it in the proper form. The project
must either obtain an exception to the documentation requirements under these circumstances, or
the documentation must be produced by project engineers. However, in the ideal case, the generator
will be tailorable to produce the appropriate documentation.

Unanticipated tailoring is also an option with generator assets. This typically takes the form of
modifying the generated components to meet some system need unforeseen by the domain analysts
and/or generator developers. The engineer is free to add additional concepts to generated code
or to adapt it to the particular context of the system under development, but any such activity
should be pursued with great caution. One problem with this is that generated source code is
often not as human readable as hand-written code, and may thus be significantly less modifiable
and maintainable. A potentially more serious problem is that generated components are in some
sense less persistent than the specifications from which they were produced, and any time the
products are regenerated, perhaps with slight variations, any hand modifications to earlier versions
of the generated products will have to be redone. This is inherently a risky and error-prone
process, and this risk presents a substantial disincentive to perform such modifications. However,
this disincentive may promote greater system integration problems, since more "glue code" or
modification to other system components may be necessary to accommodate the perceived rigidity
of the generated components.

Another alternative when the generator doesn't fully meet system needs is to modify the generator
itself to accommodate greater variation or to satisfy some specific system requirement. Ideally,
this should be done by notifying asset creators that a need exists, so that they can perform the
necessary modifications and evolve the domain model in concert. Even if this is not done, the asset
creators should be notified after the fact so that the modifications will eventually be reflected in the
domain model. Obviously, generator modification is only possible when the generator source code
is available, and this may often not be the case. particularly when the generator is a commercial
product.

4.4.3 Feedback to Reuse Planning, Asset Creation, and Asset Management

The goals for each reuse-based system development effort are defined in the reuse planning process,
as described in 4.1. To determine if the reuse goals have been met, the plans may stipulate that data
be collected during asset utilization. The effectiveness of reuse during asset utilization is difficult to
measure because different applications may have different goals, and generalization of results may
be impossible without a large sample. Thus, asset utilization processes should be carefully tailored
to meet each organization's particular metrics collection needs, and this aspect of the process should
be followed meticulously over a series of development efforts to enable the organization to evolve
and gradually improve their software development processes and capabilities.

For each reuse-based development effort, assets within the relevant domain(s) will likely need to be
updated based on feedback from asset utilization. The engineering of each new system and even
enhancements to existing systems will tend to identify needed changes. If changes are appropriate,
the domain model must be updated, new assets may be constructed, and other assets may be
changed or deleted. One possibility is that the tailoring and composition of certain assets during

Page 41

14 February 1992 STARS-TC-04040/001 /00

system construction may reveal ways in which existing assets can be further generalized or combined
into larger-scale assets, or, alternatively, may indicate that what was previously considered a single
domain is best viewed as a collection of subdomains, each somewhat more specialized for particular
needs than its parent. In addition, unanticipated shortcomings or bugs may be revealed during
utilization, and these will need to be fixed. Utilization may also identify areas in the domain where
expanded capabilities are needed to meet evolving requirements; these can be identified through
new feature requests that are submitted by engineers, but can also be automated to some degree by
analyzing failed asset queries to identify perceived engineering needs that the library and domain
model are not satisfying.

Similarly, each reuse-based development effort should yield lessons that can be applied to asset
Smanagement within the domain. Engineers' experiences with browsing and querying the library

may result in recommendations for refining or correcting aspects of the library's classification scheme
or asset descriptions. Experiences with the tools used to facilitate asset understanding, tailoring,
integration, and generation may yield recommendations for additional tools or improvements to the
existing tools. Problems with assets that were thought to be well-qualified may reveal inadequacies
in the asset qualification process. Some systems may require assets in multiple domains, and

* the libraries housing assets in some of the domains may be located remotely; lack of adequate
access to the remote libraries may result in recommendations for improved library connectivity or
interoperability.

Page 42

I
14 February 1992 STARS-TC-04040/00 1/00

I 5 Integrating Views of the Framework

-U Section 4 describes the STARS Reuse Process Framework, identifies the process families within the
framework, and identifies and discusses in some detail the individual processes within each family.
The primary focu i of section 4 is on individual elements of the framework, with relatively little
emphasis on how the elements interrelate, and even less emphasis on how the framework can be
used to address organization or project needs.

This section provides three additional views of the framework that serve to integrate some of the
individual concepts introduced in section 4:

9 The Reuse-based Software Life Cycle Models view identifies a variety of reuse-based
life cycle models and discusses how processes within the framework can be applied to each.

* The Technology Support for Reuse Processes view discusses how the technology avail-
able and in use within an organization can impact the specific reuse processes that the orga-
nization employs.

* The Seamless Library Interoperability view illustrates that asset libraries can be man-
aged and integrated to establish a distributed network of seamlessly interoperating libraries
that asset utilizers can access transparently.

5.1 Reuse-based Software Life Cycle Models

Life cycles are usually modeled as a time-ordered series of major activities. A waterfall model treats
the major activities as phases. A spiral model treats major activities as quadrants of an increasing
spiral. As discussed briefly in Section 4, the Reuse Process Framework is to be used to guide
composition and instantiation of reuse-based software life cycle models by selecting compatible
processes from among its process families. The processes selected should be compatible among
themselves, with organizational goals, strategies, and strengths, with project requirements and
constraints, and with characteristics of the domain.

There are a number of different reuse-based life cycle models that can be derived from the STARS
vision. Three such models that address different aspects of reuse, based on different organizational

goals, are:

S* reuse-based domain development and evolution,

* reuse-based system integration, and

1e reuse-based system evolution.

Any given organization may employ these models individually or may combine different elements
of them, along with other aspects of reuse, to form alternative reuse-based life cycle models. In
particular, the above models could be combined to establish an overall domain management life

Page 43

14 February 1992 STARS-TC-04040/001/00

-- cycle model that tightly integrates the processes of asset creation, system development and integra-
tion, and system and asset evolution. However, for simplicity, the remainder of this section mainly
addresses the life cycle models listed above on an individual basis.

Reuse-based domain development has the goal of producing and evolving domain models, software
components, software architectures, or application generators that may be used in many differ-
ent software-intensive systems in the same domain. Domain development primarily produces and
evolves software assets. Reuse-based system integration constructs new, complex software-intensive
systems that are integrations from multiple (sub)domains. System integration primarily reuses soft-
ware assets. Reuse-based system evolution has the goal of maintaining software-intensive systems
while their underlying requirements, constraints, and supporting technologies evolve. System evolu-
tion primarily reuses software assets, but it can also provide key input to the asset creation processes
for evolving the assets to reflect system needs within relevant domains. The key difference between
integration and evolution is that evolution begins when integration delivers a complete system.
Note that these descriptions do not imply how tightly or loosely related the organizations are that
hand off products from one life cycle or project to another.

Domain development reflects an emerging DoD market niche to construct and evolve software-
related products for individual domains, to support rapid development or integration of families of
similar systems. System integration complements domain development by constructing new systems
from products of the development. System evolution reflects (1) an accommodation to changing
DoD budgetary constraints emphasizing fewer new procurements and more long-lived systems and
(2) a recognition that maintenance often consumes a large majority of system life cycle costs.
Furthermore, system evolution, to the extent that it incorporates domain modeling processes to
facilitate understanding of the system and promote adaptability of the system to changing needs,
may be able to take advantage of evolving domain development products.

If we reorganize the processes of the Reuse Process Framework into "phases" where activities in one
phase precede or create products used by activities in another phase, the result is a phase for domain
analysis and modeling processes followed by a phase for software asset creation processes followed by
a phase for asset utilization processes. These phases are depicted in Figure 2. We have grouped the
processes of the asset creation family into two separate phases so that we can highlight our belief
that all reuse-based life cycle models should include domain analysis and modeling processes in
some form. Asset management processes, being more infrastructural in nature and thus supporting
all three phases, are omitted from this view for simplicity.

The use of the word "phase" in this discussion is not intended to imply a particular life cycle
model, such as a waterfall model: the specific reuse-based life cycle model that is employed by
an organization will govern which phases are used and how much feedback and iteration there is
between phases. For instance, it is plausible to define a domain development life cycle model that
only iterates through domain analysis and modeling processes and software asset creation processes.
It is also plausible to define a system integration life cycle model that uses domain analysis and
modeling processes to adapt an abstract domain model to a particular system that is to be built
and then uses asset utilization processes to tailor and assemble the system, skipping software asset
creation processes because the assets were previously created to be consistent with the original,
more abstract domain model [STA90]. Further, it is plausible to define a system evolution model
that, once a domain model has been created, primarily concentrates on asset utilization processes
and uses the feedback processes to asset creation to refine domain knowledge and guide asset

Page 44

14 February 1992 STARS-TC-04040/001 /00

.. . . • - .i~ ii~i::::~ i~ii: i~ii~i:: :: : :? :i~:.:.i i.:i................:... i:

DOMAIN SOFT WARE ASSET
ANALYSIS -. UTIUIZATION. ...
AND :: :PROCESSES
MODELING ..E$ E$PROCESSES ,.

RE-EGINERINGCOMPOSITION
RE-ENINERIN METHODS

ReverseI Engineering

Translation

Design
Recovery GENERATION

METHODS

Figure 2: Methods Supporting Reuse

evolution. What is important to note about these life cycle models is that all use domain analysis
and modeling to drive asset creation or utilization and that all should strive to ensure that the
reuse investment remains viable by keeping domain knowledge current and incorporating feedback
from asset utilization activities.

We can also use Figure 2 to relate the reuse process families to current reuse and reengineering
research efforts. Reuse and reengineering are often described in terms of domain engineering or
forward engineering activities [Ree9l]. These activities are not mutually exclusive, and Figure 2
helps to illustrate how they overlap. The activities involved in domain engineering, e.g., domain
analysis and modeling, software asset creation, and asset evolution, map to processes of the asset
creation family of the Reuse Process Framework. The activities involved in forward engineering, e.g.,
production of software products such as architectures, components, generators, or systems, map to
processes of the aset creation and asset utilization families of the Reuse Process Framework.

Page 45

14 February 1992 STARS-TC-04040/001 /00

5.2 Technology Support for Reuse Processes

Figure 2. which depicts major activities or phases of reuse-based life cycle models, provides a context
for considering the categorization of supporting technology (methods and tools) as either compo-
sition-, generation-, or reengineering-based. The figure shows reengineering technology supporting
domain analysis and software asset creation: and shows composition and generation technology
supporting domain analysis, software asset creation, and asset utilization.

Selection of specific reuse support technology to use on a project should follow the organization's
reuse strategy and specific process selections. That is, the technology depends on the life cycle
model to be used, the maturity of the domain for which the project is planned, the strengths
and weaknesses of the organization and its members, and management objectives to minimize the
impact of inserting new technology into an organization. To put it simnly, a life cycle model and
its constituent processes should be defined before the supporting technology is chosen.

The remainder of this section discusses the roles of construction (composition and generation) and
reengineering technologies.

5.2.1 Reengineering Technology

The use of reengineering technology is a major reuse thrust for many organizations who find they
have millions of lines of source code based on obsolete hardware and development approaches. The
goal of applying reengineering technology is to analyze and rework existing systems in order to
reuse expertise already encoded in them. As Figure 2 shows, reengineering methods include reverse
engineering, design recovery, and source code translation.

We believe reengineering technology can be used to support a shift in focus for software mainte-
nance, post-deployment support, or reengineering organizations from a reactive life cycle model to
a reuse-based life cycle model of system evolution. Reengineering technology, through support of
domain-focused asset creation processes and domain analysis and modeling processes, can extract
and make human understandable valuable and costly information that has been obscured by the
passage of time or turnover in project personnel. Besides reducing the inaccessibility of information
about a system, the products of reengineering can be used to (re)structure a system to take advan-
tage of current and emerging standards and technologies, to better predict the impact of particular
changes to a system, and to guide reapplication of a system or parts of a system to solve a similar
problem.

Although numerous commercial reengineering tools have recently been announced, few success-
ful applications have been widely publicized. Several factors are hindering tie wide-spread use of
commercial-off-the-shelf standalone or integrated reengineering tools. Reengineering tools are often
based on an intermediate abstract representation of code (e.g., DIANA, IRIS, IDL, REFINE, etc.)
such as compilers use, but there has been little cooperation between compiler and reengineering
tool vendors. Secondly, there is no official abstract representation standard that allows translation
from one programming language to another. Thirdly. DIANA is a nearly standard abstract repre-
sentation for Ada but most legacy systems are not coded in Ada. Finally, design recovery depends
on extracting semantic as well as syntactic information, which often requires the application of
knowledge-based techniques that are just now being slowly adopted by software tool vendors.

Page 46

14 February 1992 STARS-TC-04040/001 /00

-- However, there are some standardization efforts with respect to Ada compiler technology that
can be used to support reengineering of Ada programs. These efforts are working to standardizeI_ interfaces to support extraction of semantic information from Ada source code. In particular,
STARS has sponsored the development of the Ada Semantics Interface Specification (ASIS), a
draft Ada interface binding to Ada compilers' databases [BB91], and has also supported proof-Iof-concept implementations of selected aspects of the draft ASIS bindings by some Ada compiler
vendors. Widespread vendor support for this emerging standard should enable Ada reengineering
tools to readily access information that is critical to sophisticated reverse engineering and design

I recovery techniques.

I 5.2.2 Construction Technologies

As discussed in section 4.4, composition and generation are the two major approaches to construct-
ing software systems. The basic theme of composition is to assemble the desired system from
software components, where the components may be newly created or reusable. The basic theme
of generation is to transform specifications of requirements and constraints into the desired system.

Technologies supporting system construction often mix both approaches, making them difficult to
categorize. For instance, generation tools, rather than applying a series of textual translations
to their input, may actually assemble their output guided by the input specifications. Tools sup-
porting composition may, in effect, generate individual software components for later assembly via
specification of parameters (e.g., Ada generics).

Exact categorization of system construction technology is not important to evaluating whether
to apply it in support of a particular life cycle model or project. What should be considered isIthe type of asset on which the technology operates. Composition technology operates on software
components or subsystems; generation technology operates directly on system requirement or con-
straint specifications. Thus, use of a generation approach is more common and appropriate in
mature domains with well-understood requirements and where the impact of specific constraints on
resulting systems is known. Composition is more appropriate for new or immature domains where
specifications are difficult to write or to complete, or where the transformations that need to be5 applied to generate the software are unclear.

Technology supporting composition includes software component library systems, domain model
browsers, and software structure/design browsers. Technology supporting generation includes pro-
gram transformation systems. application generators, and meta-generators.

The choice of technology to support reuse-based system evolution or system integration life cycle
models will be determined by the compatibility between candidate technologies and an organi-
zation's development environment, the level of expertise in the organization with regard to both
the domain and the candidate technologies, the availability of relevant assets, and the forms of
technology that are most appropriate for utilizing the available assets.

The choice of technology to support a reuse-based domain development life cycle model reluires
assessment of both the developing and using (customer) organizations' development environments,
their expertise in the domain and the candidate technologies, and the appropriateness of partic-3 ular technologies for the target domain. For example, a developing organization may be able to

3 Page 47

14 February 1992 STARS-TC-04040/001/00

construct a very flexible, complete set of components for a particular domain but may choose to
construct a more limited application generator because potential customer organizations do not
have sufficient domain expertise or experience to be able to take advantage of the more exten-
sive software components library or do not wish to incur the extra cost or effort needed to use
the flexibility available. The former case, limited customer experience, is consistent with domain
immaturity; the latter case, desire to limit costs, is consistent with tactics followed by customer
organizations wishing to limit development costs when using a mature, enabling technology such
as relational databases.

5.3 Seamless Library Interoperability

STARS envisions that reuse in the future will occur in the context of a distributed network of
heterogeneous domain-specific libraries. Each library will likely focus narrowly on one or a small
set of vertical or horizontal domains, since libraries emphasizing relatively narrow domains are more
likely to yield high impact reuse through greater depth of focus and better control of variability.
However. this proliferation of domain-specific libraries will promote library heterogeneity, since the
libraries will utilize distinct data models designed specifically to capture the characteristics of their
respective domains. This heterogeneity, if unmanaged, may potentially inhibit reuse by forcing
users to understand the structure and terminology of many different library data (or meta-data)
models. To further compound the difficulties library users may face, the libraries will operate on a
variety of hardware and operating system platforms, and each library may potentially reside on a
different host in a local or wide area network.

In this distributed, heterogeneous library context, one of the key challenges will be the establishment
of mechanisms to allow users at a given host to locate, inspect, and reuse assets within the entire
library network. Capabilities will be needed to enable users to find and retrieve assets that are
of interest to them, regardless of the libraries in which those assets reside. Such capabilities will
require some global knowledge of the contents of the networked libraries. The heterogeneity of the
libraries makes the representation of this knowledge particularly challenging, since such knowledge,
if represented in any depth, must reflect the structure of the individual library data models to some
degree.

5.3.1 Levels of Library Interoperability

The challenges of library interoperability can be met in a number of ways and to varying degrees.
Following are characterizations of several potential levels of interoperability.

Seamless

The goal for distributed, heterogeneous libraries is to create a truly "seamless" environment for
library users, in which the boundaries between libraries are transparent to the user and a convincing
illusion of a single library (or perhaps library of libraries) is created. The entire asset information
space appears to have a uniform and consistent structure, in the sense that it all appears to be
derived from a single meta-data model. The individual library data models also appear to have

Page 48

I
14 February 1992 STARS-TC-04040/001/00

I significant consistency, within the limits of the natural variability inherent in the domains being
modeled.

I In such a library environment, the user has a common set of operations to apply to assets in all
the libraries. In particular, those operations are the operations provided by tools in the user's
native software engineering environment (SEE). Other users, in other SEEs, will similarly be able
to employ the operations available to them. The key point here is that two users, in two different
SEEs, will be able to access the same seamless asset information space, but their views of that
space, and the ways in which they interact with it, may be substantially different (yet both entirely
valid), depending on the characteristics of their respective SEEs.

Biggest Seams Show

In a somewhat less seamless heterogeneous library environment, the largest seams are evident
to a user. The user is now aware that there are different libraries on different host systems,
interconnected via a network. Nevertheless, the meta-data models of the various libraries appear
consistent, and the operations that the user applies to all the assets are still basically the same as
in the more seamless environment. However, those operations may need to be tailored somewhat
to overcome the now apparent physical separation of libraries.

Whereas in the more seamless environment, there may be substantial interrelationships between
physically distinct libraries, thus further blurring the boundaries between them, in this environment
there are fewer such relationships expressed (that is, a somewhat reduced level of global knowledge),
and the relationships that do exist may require the user to actively switch library context to follow
them. At this level there will be a greater need to formally interchange assets (transport assets and
data models) between libraries to replicate and localize knowledge about certain assets within the
network, reflecting the somewhat greater difficulty involved in navigating the total asset information
space.

Smaller Seams Show

At a lower level of library interoperability, the physical separation of libraries is highly apparent,
and the user needs to actively and explicitly cross library boundaries to move from one library
context to another. However, there is still significant global knowledge of the asset information
space available at this level, possibly in the form of library and asset directory services (sometimes
referred to as yellow pages services) to provide coarse guidance about where to go to find (or at
least to look for) certain assets or classes of assets.

Differences in library structure and user interfaces are apparent at this level, but there may be
significant documentation or on-line assistance to help the user operate in different libraries within
this environment. There is a strong need (and sufficient automated support) for formal asset

interchange between libraries, due to the greater difficulty in finding and retrieving assets than
exists at the higher two levels, creating a need to localize key assets to minimize future search. In
addition, there may be significant global capabilities for retrieving remote assets via centralized
storehouses of raw asset data, which are referenced by asset descriptions within individual libraries
in the network.

Page 49

14 February 1992 STARS-TC-04040/001 /00

All Seams Show

The lowest level of library interoperability, where all or nearly all the seams show, approximates
the current state of the practice. In such an environment, the user may be aware of a set of libraries
that are accessible by various means either locally or remotely, but little if any global knowledge of
library contents is available, thus requiring the user to visit each library to obtain such knowledge
and to inspect the assets contained within. Each library is likely to have a unique structure and user
interface that must be learned by each user, often without the benefit of adequate documentation
or on-line assistance, and there are likely to be few automated capabilities for retrieving remote
assets and their associated domain context to facilitate either asset utilization by users or asset
interchange by library administrators.

5.3.2 Interoperability between Libraries and SEEs

In addition to library-library interoperability, another important aspect of reuse in the future will be
interoperability between asset libraries and the SEEs employed by users. Asset libraries and their
associated tools, like any software engineering capabilities, can be integrated into a SEE with or
without careful regard ;or how they will work together with other elements of the SEE to help solve
users' problems. Libraries that are not well integrated may substantially inhibit efficient reuse by
erecting artificial barriers to the management, understanding, and utilization of assets. In contrast,
libraries that are very closely integrated with their SEEs, and can thus readily apply to assets
many of the SEE capabilities that are applicable to ordinary SEE objects (e.g., communications,
versioning, configuration management, access control, measurement and understanding), while also
interoperating smoothly with the tools employed to reuse the assets, will not merely remove barriers
to reuse, but actually encourage it as a natural element of day-to-day user activity within the SEE.

Page 50

14 February 1992 STARS-TC-04040/001 /00

A Glossary

abstract representation An expression of the syntax and semantics of a program or program
fragment in a form that abstracts away the concrete syntax of a programming language. For
example, a parse tree or a DIANA expression of an Ada package.

activity A set of related actions.

application generator A software tool that accepts as input the requirements or design for a
computer program [or component] and produces source code that implements the require-
ments or design. Also referred to as source code generator.

asset Any unit of information of current or future value to a software-intensive systems devel-
opment and/or PDSS enterprise. Assets may be characterized in many ways including as
software-related work products, software subsystems, software components, contact fists for
experts, architectures, domain analyses, designs, documents, case studies, lessons learned,
research results, seminal software engineering concepts and presentations, etc.

asset certification The process of confirming that an asset correctly implements its stated func-
tion(s), adheres to quality and reuse standards, and, possibly, is formally proven correct.

asset evaluation The process of determining whether a particular asset fits requirements and
constraints of a particular software application, architecture, or domain model.

asset library A collection of software assets controlled by an asset library system. Typically, asset
libraries are implemented using an asset library system, which is a computer-based system
designed to facilitate the reuse and sharing of software assets. Asset library systems provide
a set of services that support qualifying, reusing, and managing software assets. See Asset
Library Open Architecture Framework (under framework) for a discussion of these services.

asset library interoperability The ability of two or more distinct, heterogeneous asset libraries
to dynamically provide access to the other's assets, asset descriptions, and data models.

asset understanding The process of thoroughly analyzing an asset and its description in order
to grasp the functionality being provided as well as the constraints and limitations on its use.

collaborative development A development process characterized as a cooperative, team effort
that may cross geographic or organizational boundaries. For instance, the DoD Prototech
project is a collaborative development involving mixed academic and industrial teams.

component One of the parts that make up a software-intensive system. A component may be
hardware or software and may be subdivided into other components. A complete software
component includes both the object code and all related information that is needed to use it.
This related information includes parameterization information, source code if not proprietary,
test information, design information, evaluation results, and other descriptive information.

composition The reuse methodology or approach that combines software components, subsys-
tems, etc. into a single application system.

constraint A functional or operational requirement for a software system that limits the possible
solution space.

Page 51

I
14 February 1992 STARS-TC-04040/001/00

I data model The information that describes the structure of the data in a database (e.g., an asset
library). This STARS reuse definition is not consistent with another commonly used definition3 of this term, equivalent to the term meta-data model below.

meta-data model The basic constructs and rules that are used in the creation and modifi-
cation of data models. This STARS reuse definition is equivalent to a commonly used

definition of the term data model.

design The process of defining the software structure, components, modules, interfaces, and data
for an application.

design rationale The reasons for decisions and design elements that underlie a particular design.

I- design recovery The process of analyzing the results of reverse engineering to identify design

elements, their interrelationships and interactions, and their design principles, requirements,
and constraintz. See reverse engineering.

distributed, heterogeneous asset library An asset library that is implemented across distrib-
uted. heterogeneous computer platforms and is based on heterogeneous library data models.

domain An area of activity or knowledge. Domains have been characterized as application, hor-

izontal, or vertical, technology, computer science, execution, execution models, etc.. FigureI3 graphically depicts relationships among some characterizations of domains, while the text
below elaborates on those characterizations.

application domain The knowledge and concepts that pertain to a particular computer
application area. Examples include battle management, avionics, C3 I, nuclear physics.
Each application domain can be decomposed into a tree or family of more specialized
(sub)domains where the decomposition is guided by the purpose or aim of the domain.

For example, C3 l may be decomposed into C31 for land operations, for sea operations,
for air operations. etc.

horizontal domain The knowledge and concepts that pertain to a particular functional-
it' of a set of software components that can be utilized across more than one ap-
plication domain. Examples include user interfaces, database systems, and statistics.

Most horizontal domains can be decomposed into a tree or family of more specialized
(sub)domains where the decomposition is guided by characteristics of the solution soft-
ware. Distinguishing characteristics may be software decomposition style (functional,
object-oriented, data-oriented, control-oriented, declarative, etc.), conceptual underpin-

ning (relational. hierarchical data models), and/or required hardware. One example is
subdividing user interfaces into ANSI-terminal-supporting versus bit-mapped, mouse-

input-supporting solutions.

vertical domain The essential functionality of a restricted set of systems that pertain to
a particular member of an application (sub)domain. This functionality can be orga-I- nized as a hierarchy of functions. Also, a particular solution identified as implementing
one horizontal (sub)domain may be recognized as a good fit to requirements as de-

- scribed/modeled for a specific vertical (sub)domain.

domain analysis The process of identifying, collecting, organizing, analyzing, and representing
a domain model and software architecture from the study of existing systems, underlying

theory, emerging technology, and development histories within the domain of interest.

Page 52

14 February 1992 STARS-TC-04040/001/00

Application
MILITARY SYSTEMS Domains
Ue... (Decomposed

AVIONICS BATTLE by Purpose)

MGT C31

MISSILE A
AVIONICS

ICBM

CRUISE panflWh FuncomalMoel
SURFACE SdAwe-A ir Missile AvWon icsSURFACE I...............

TO
AIR iFINC USER

Missile Avionics X
Vertical Domain X F:ACE

FUNCTION :

Horizontal Domain
(Decomposed by Solution Characteristics)

USER INTERFACES _------

ASCII BITMAPPED 'PANEL
TERMINAL

-AE ZI.

II..
Lisp C Ada

Figure 3: Types of Domains

domain engineering The construction of components, methods, and tools and their supporting
documentation to solve the problems of system/subsystem development by the application of
the knowledge in the domain model and software architectures.

domain model A definition of the functions, objects, data. requirements, relationships, and vari-
ations in a particular domain.

domain functional model A decomposition of representative systems of the domain that
gives the functional capabilities for them and variability of those capabilities. Note that
the decomposition does not imply a particular system architecture or set of subsystems.

domain-specific language A machine-processable language whose terms are derived from the
domain model and that is used for the definition of components or software architectures
supporting that domain.

framework A skeletal structure to support or enclose something. The skeletal structure in these
reuse documents is a conceptual structure that delimits the concepts being discussed; supports

Page 53

14 February 1992 STARS-TC-04040/001 /00

understanding and technical transition; and promotes evolution.

Asset Library Open Architecture Framework (ALOAF) The con-cep-tual struc-ture
that sup-ports seam-less inter-change and interoperability among networked, distributed,
heterogeneous asset libraries by defining a service model; protocols supporting that
model; Ada package specifications for the protocols; and a specification for an asset
interchange common data model, semantics and formats.

Conceptual Framework for Reuse Processes The conceptual structure that categorizes
and interrelates reuse processes by their purposes, goals, and activity characterizations.
Also called Reuse Process Framework.

generation The reuse approach or methodology that constructs a software (sub)system from non-
procedural user specifications of desired functionality. See composition.

library mechanism A software (sub)system that provides a framework for a logical library ca-
pability. A library mechanism requires tailoring and, possibly, extension to become a library
system instantiation.

life cycle All the states a software or software-related product passes through from its inception
until it is no longer useful. Note that this definition shifts the usual definition of life cycle,
which is based on the life of a system, to a more general concept covering the lifetime of a
software product.

life cycle model A general framework describing processes, activities, and tasks involved in the
development and maintenance of software and software related products, spanning the prod-
ucts' life cycles. This document shifts modeling of life cycles from phases to compositions
of processes and characterizes different life cycle models by their individual goals. Life cycle
models discussed in this document are described immediately following this paragraph.

reuse-based domain development life cycle model A reuse-based life cycle
model whose goal is to produce architectures, domain models, software components,
and appl-i';ni g,'nerators that provide a family of solutions for a particular domain.

reuse-based system integration life cycle model A reuse-based life cycle
model that constructs new, complex software-intensive systems that integrate software-
related assets from multiple domain developments.

reuse-based system evolution life cycle model A reuse-based life cycle model whose
goal is maintaining a software-intensive system while its requirements, constraints, and
supporting technologies evolve.

life cycle phase One element of a life cycle model that treats a life cycle as a series of major
product stages.

life cycle process A particular instance or implementation of a life cycle model, oriented towards
the development or evolution of a particular set of products within a particular organization.

method A series of steps, actions, or activities that use a defined set of principles to bring about
a desired result.

methodology A set or system of methods and principles for achieving a goal such as producing
a software system.

Page 54

I
14 February 1992 STARS-TC-04040/00 1/00

- process A rigorous description for a series of steps, actions, or activities to bring about a desired
result. The process may be expressed at various levels of abstraction, reflecting the various
degrees of precision appropriate at different organizational levels and at different stages in
the definition of a overall life cycle process. Depending on the level of abstraction at which
a process is described, it may or may not include well-defined inputs, intermediate products,
constraints, needed resource descriptions, outputs, and testable criteria for starting, stopping,
and moving on to the next step in the series.

process building block A precise definition of a process that can be composed with other processIbuilding blocks to construct life cycle models or processes.

process definition A rigorous description of a process including defined outputs and results,Ipossibly formal representations, well-defined beginning and end points, and testable start
and stop criteria.

3 query A request for identification of a set of assets, expressed in terms of a set of criteria which
the identified items must satisfy.

reengineering The process of examining, altering, and re-implementing an existing computerIsystem to reconstitute it in a new form.

requirement A capability or characteristic that must be provided or met. Requirements can be
functional, i.e., provide capability, or can be non-functional, i.e., meet important characteris-
tics such as can be levied as criteria on dynamic performance for data access or retrieval.

reverse engineeering The process of analyzing a computer system's software to identify compo-
nents and their interrelationships. See design recovery.

reuse The transfer of expertise. In software engineering, reuse often refers to the transfer of ex-
pertise encoded in software related work products. The simplest form of reuse from software
work products is the use of subroutine/subprogram libraries for string manipulations or math-
ematic calculations. The simplest form of reuse of expertise not represented in software work
products is the employment of a human experienced in the desired endeavor.

reuse strategy A strategy for instituting and evolving reuse-based approaches to system andI software development within an organization. The strategy includes a reuse-based life cycle
model tailored as needed to meet the overall needs of the organization, which is tnen further3tailored to meet the needs of specific projects within the organization.

reuse-based development The application of a disciplined, systematic, quantifiable approach to
the development, operation and maintenance of software with reuse as a primary consideration3 in the approach.

software development plan (SDP) The controlling document for managing a particular soft-3_ ware development project.

software architecture The high level design of a software system or subsystem. Includes the
description of each software component's functionality (or result), name, parameters andU their types and a description of the components' interrelationships. Note that this definition
describes software architecture from a system point of view rather than a domain point of
view. Many different definitions of software architecture are currently in use, often in theI same sentence depending upon qualifiers such as 'generic' or 'domain-specific'. The next

Page 55

14 February 1992 STARS-TC-04040/001/00

-- release of this document will bring some clarification to the definition and usage of this term
by STARS.

I- software engineering environment (SEE) The computer hardware, operating system, tools,
computer-hosted capabilities, and rules that an individual software engineer works within to
develop a software system.

software-intensive A characteristic of a system that suggests that its software components pro-3vide the majority of the system's functionality and capability.

specification A document or formal representation that prescribes, in a complete, precise, ver-
ifiable manner, the requirements, design, behavior, or other characteristics of a software-
intensive system or software component.

tailoring The process of adapting requirements, designs, architectures, components, tools, or pro-3cesses for implementation in actual systems or development environments.

technique See method.

technology The methods and tools used in the application of a scientific or engineering discipline.

traceability The characteristic of software systems or designs or architectures or domain models
that identifies and documents the derivation path (upward) and allocation/flowdown path
(downward) of requirements and constraints.

translation A reengineering method that transforms a program fragment written in one program-
ruing language or language version into another.

validation The process of approving the use or verifying the behavior of a software-related product
I or asset.

variation The manner in which or extent to which a domain characteristic, requirement, con-3 straint, or functional or architectural element may vary.

II

-- Page 56

